首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
细菌降解多环芳烃上游途径的遗传学研究进展   总被引:1,自引:1,他引:0  
多环芳烃是一类毒性较大的环境污染物。微生物降解和转化是消除此类污染物的理想方法,已发现多种细菌具有这种功能。主要针对细菌在多环芳烃降解中上游途径的代谢酶及基因簇的组成进行综述,阐述了酶的遗传学特点,并探讨了PAHs代谢基因的进化。这有助于了解PAHs的细菌降解机制,并为有效实施生物修复提供理论依据。  相似文献   

2.
多环芳烃(PAHs)是指两个或两个以上的苯环以线性排列、弯接或簇聚方式构成的一类碳氢化合物。这类化合物广泛分布于环境中, 具有潜在的致畸性、致癌性和遗传毒性。在自然环境中, 好氧细菌对PAHs的生物降解是一种很重要的方式, 凸显其在清除环境PAHs污染物中具有广阔的应用前景。在过去二十多年中, 科学家们已经从基因水平上对好氧细菌降解PAHs的机制进行了深入的研究, 其中包括PAHs降解基因的多样性、与PAHs降解有关的基因以及细菌群体PAHs遗传适应机制等。在此, 就好氧细菌对多环芳烃降解机制的研究进展进行了综述和讨论。  相似文献   

3.
PAHs降解基因及降解酶研究进展   总被引:1,自引:0,他引:1  
由于环境中的多环芳烃(PAHs)具有高遗传毒性和"三致"性(致癌、致畸和致突变),其生物降解基因和降解功能酶研究备受关注.多环芳烃双加氧酶是近年来研究较多的多环芳烃降解的关键酶系之一,主要由细菌产生,可通过氧化反应使多环芳烃开环生成小分子的中间产物并最终氧化成CO2和水.目前,有关这类酶的理化性质、结构特点、功能等的研究相继开展,本文对PAHs降解基因、降解酶的研究现状与发展趋势进行综述.  相似文献   

4.
多环芳烃(PAHs)是指两个或两个以上的苯环以线性排列、弯接或簇聚方式构成的一类碳氢化合物.这类化合物广泛分布于环境中,具有潜在的致畸性、致癌性和遗传毒性.在自然环境中,好氧细菌对PAHs的生物降解是一种很重要的方式,凸显其在清除环境PAHs污染物中具有广阔的应用前景.在过去二十多年中,科学家们已经从基因水平上对好氧细菌降解PAHs的机制进行了深入的研究,其中包括PAHs降解基因的多样性、与PAHs降解有关的基因以及细菌群体PAHs遗传适应机制等.在此,就好氧细菌对多环芳烃降解机制的研究进展进行了综述和讨论.  相似文献   

5.
多环芳烃微生物降解基因的研究进展   总被引:12,自引:2,他引:10  
郑乐  刘宛  李培军 《生态学杂志》2007,26(3):449-454
多环芳烃(PAHs)是环境中普遍存在的一类有机污染物,微生物的降解是PAHs去除的主要途径。近年来,有关PAHs微生物降解途径和代谢产物的研究已有很多报道。小分子PAHs一般可以直接被微生物降解,而大分子PAHs则需要微生物以共代谢的方式降解。在过去20年中,微生物降解PAHs的基因相继被发现,各种基因在调控PAHs降解过程中的功能也越来越清晰。本文概述了PAHs微生物降解基因方面的研究进展,详细介绍了微生物对萘、菲的降解基因,最后对PAHs微生物降解基因的应用前景进行了展望。  相似文献   

6.
不同介质中多环芳烃光降解及与生物耦合降解研究现状   总被引:2,自引:0,他引:2  
多环芳烃(PAHs)是环境中广泛存在的一类有机污染物。它的降解一直是人们关注的课题。光降解就是多环芳烃降解的一种重要形式。对在气相、液相和固相不同介质中的PAHs光降解研究进行了综合论述,重点对PAHs在液相介质的降解速率及影响因素、中间产物及降解机制和反应动力学进行了深入探讨,并介绍了光-生物耦合降解多环芳烃的研究进展。建立系统而有效的PAHs光降解研究技术与方法,是目前当务之急。进一步完善PAHs光降解研究的技术与方法,可更准确地研究PAHs光降解机制及影响因素。  相似文献   

7.
[目的]土壤中的多环芳烃(polycyclic aromatic hydrocarbons, PAHs)可被蔬菜根系吸收并在可食部分积累进而通过食物链威胁人群健康。接种功能内生细菌能有效减低蔬菜中PAHs的积累,而关于其对蔬菜亚细胞组分中PAHs积累的影响却鲜有报道。[方法]采用体外实验,研究了接种具有菲降解功能的菌株Diaphorobacter sp. Phe15对空心菜茎叶亚细胞组分中菲积累的影响及PAHs代谢相关酶活性的响应。[结果]接种Phe15可以可加速空心菜茎叶亚细胞中菲的降解,显著削减空心菜亚细胞组分中菲的含量,接菌后空心菜亚细胞组分中菲降解率达90%以上。此外,接种功能菌Phe15可以影响空心菜亚细胞组分中PAHs代谢相关酶系的活性,空心菜亚细胞水平POD、PPO、C230活性整体得到提高,且酶系活性与空心菜体内菲积累呈负相关关系。[结论]接种具有菲降解功能的菌株Phe15增加了空心菜亚细胞水平PAHs代谢相关酶系活性,进而降低空心菜体内菲的积累,研究结果为利用功能内生细菌削减蔬菜中多环芳烃污染提供了一定的参考和理论依据。  相似文献   

8.
多环芳烃厌氧生物降解研究进展   总被引:2,自引:1,他引:1  
孙娇  张作涛  郭海礁  王慧 《微生物学报》2020,60(12):2844-2861
多环芳烃(PAHs)是环境中广泛分布的一类持久性有机污染物,对生态环境和公众健康具有极大危害。微生物降解是环境中去除多环芳烃污染的有效途径,近年来PAHs厌氧生物降解研究逐渐取代好氧降解成为人们关注的重点。本文从PAHs厌氧生物降解的研究背景出发,从不同厌氧还原反应体系、厌氧降解微生物、PAHs厌氧生物转化途径等方面阐述了PAHs厌氧生物降解的研究概况,归纳了对PAHs厌氧生物降解有积极作用的影响因素,提出了PAHs厌氧降解研究目前存在的问题,并对该领域未来研究方向作了简述和展望。希望为多环芳烃厌氧生物降解与环境修复研究与实践提供参考。  相似文献   

9.
植物法生物修复PAHs和矿物油污染土壤的调控研究   总被引:69,自引:7,他引:62  
选择苜蓿草为供试植物,以污染物含量水平、专性细菌和真菌及有机肥为调控因子,进行了植物法生物修复多环芳烃(PAHs)和矿物油污染土壤的调控研究。结果表明,PAHs和矿物油的降解率与有机肥含量呈正相关,增加有机肥5%,可提高矿物油降解率17.6%~25.6%,PAHs降解率9%.在植物存在条件下,土壤微生物降解功能增强。多环芳烃总量的平均降解率比无植物对照土壤提高2.0%~4.7%.投加特性降解真菌可不同程度地提高土壤PAHs总量和矿物油的降解率。真菌对萤蒽、芘和苯(a)蒽/(艹屈)的降解有明显促进作用。而细菌能明显提高苊稀/芴、蒽和苯(a)萤蒽/苯(k)萤蒽的降解率。  相似文献   

10.
土壤中高环多环芳烃微生物降解的研究进展   总被引:10,自引:0,他引:10  
微生物修复是去除土壤中多环芳烃(PAHs)的主要措施。本文以微生物修复PAHs污染土壤的理论基础及其难点为主线,全面综述了土壤中高环PAHs的微生物降解机理。近年来,富集分离得到的以高环PAHs为唯一碳源和能源的优势降解菌逐渐增多,其中,主要是代谢降解四环PAHs的单株降解菌,一些降解菌还能以共代谢方式利用五环PAHs。高环PAHs污染土壤修复的一个难点是其低生物可利用性,微生物通过释放生物表面活性剂、形成生物膜以及分泌胞外多糖提高高环PAHs的生物可利用性,从而加速其降解。真菌和细菌联合作用能增强污染土壤实地修复的效果。因此,通过微生物修复技术来去除土壤中PAHs具有环境友好性、经济适用性以及可持续应用性。  相似文献   

11.
多环芳烃(PAHs)是一类有机污染物,来源广,对人体有害,微生物对环境中多环芳烃的降解有一定优越性。本文主要从降解微生物种类、影响因素、降解启动过程方面进行归纳和总结,针对以往研究工作的不足和存在的问题,指出了今后微生物降解多环芳烃研究中的重点,以求为研究者、管理者和决策者在应用时提供参考。  相似文献   

12.
多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)是一种具有致癌、致畸、致突变的持久性有机污染物。本文在分析国内外主要水体沉积物中PAHs污染状况的基础上,综述了近几年有关厌氧水体沉积物中微生物以硝酸盐、Fe(III)以及硫酸盐为电子受体进行呼吸耦合PAHs降解的研究概况。此外,还总结了基于微生物的PAHs降解基因组、蛋白质组、代谢组以及菌群水平上互作网络的研究进展,以期为进一步加速PAHs污染水体沉积物原位生物修复提供科学理论参考。  相似文献   

13.
芘在土壤中的共代谢降解研究   总被引:38,自引:4,他引:34  
高分子量多环芳烃(PAHs)的降解通常以共代谢方式进行,研究比较了高分子量多环芳烃代表种类芘作为唯一C源和能源的降解过程和有共代谢底物存在下的降解过程,结果表明,25d后前者中芘的降解率57%,而后者中芘的降解率为80%,且有共代谢底物存在下,芘在降解过程中关衰期缩短;水扬酸,邻苯二甲酸,琥珀酸钠能作为共代谢底物提高芘的降解率,琥珀酸钠效果最好,芘和低要子量多环芳烃之间也有共代谢关系,菲促进了芘的降解,但萘未出现同样的结果,此外,这阐明了共代谢原理和适宜作高分子量多环芳烃共代谢底物的物质。  相似文献   

14.
微生物降解多环芳烃的研究进展   总被引:12,自引:1,他引:11  
多环芳烃是一类长久存在于环境中,具有毒性、致突变与致癌等特性的环境优先污染物。本文对降解多环芳烃的微生物类群进行了阐述,介绍了在土壤与厌氧条件下细菌降解多环芳烃的研究情况,最后介绍了降解多环芳烃的相关酶类以及分子生物学的研究,并对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

15.
藻类对多环芳香烃(PAHs)的富集和代谢   总被引:1,自引:0,他引:1  
概述了藻类对PAHs的富集和代谢的研究进展。环境中多环芳香烃(PAHs)的污染能导致严重的健康问题,利用生物特别是微生物去除污染环境中的PAHs是一项新的技术。藻类对PAHs的富集与有机污染物的类型、藻类的种类及藻类的生物量有关,活细胞和死细胞对PAHs均有富集能力。还阐述了PAHs在真菌、细菌和藻类体内代谢的途径以及代谢过程中起关键作用的酶,PAHs在藻类中的代谢途径和细菌及真菌都不同,谷胱甘肽转移酶(GST)在藻类代谢PAH过程中起重要作用,但细胞色素P450酶所起的作用则不详。  相似文献   

16.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一类在环境中广泛存在的持久性有机污染物,微生物降解是去除环境中多环芳烃污染的主要途径。传统的有关PAHs微生物降解的研究主要依靠分离培养技术,难以准确认识PAHs微生物降解的原位过程及机制。近年来发展起来的原位表征方法可以在基因及单细胞水平研究PAHs在复杂环境中的微生物降解过程,能够原位表征具有PAHs降解功能的微生物及其功能基因和代谢活性,是阐明PAHs原位降解过程及分子机制的强有力的手段。该文综述了宏基因组技术(meta-genomics)、稳定同位素探针技术(stable isotope probe,SIP)、荧光原位杂交技术(fluorescence in situ hybridization,FISH)、拉曼光谱技术(Raman spectra)以及二次离子质谱技术(secondary ion mass spectrometry,SIMS)等原位表征技术在PAHs微生物降解研究领域的应用及其存在的问题和发展趋势等。PAHs微生物降解过程及机制的原位表征将为缓解与修复PAHs污染提供科学基础。  相似文献   

17.
高分子量多环芳烃( HMW PAHs)分子结构复杂,疏水性强,是环境中广泛存在的难降解的有机污染物.微生物降解是去除HMW PAHs的主要途径.本文介绍了PAHs降解菌株的种类和降解机理,以及不同环境因子(营养元素、pH值、土壤结构、通气状况和复合污染)对HMW PAHs降解的影响,提出HMW PAHs污染土壤的进一步研究的方向与重点,旨在为HMW PAHs污染修复研究和微生物降解机理研究提供参考.  相似文献   

18.
微生物降解多环芳烃的研究进展   总被引:8,自引:0,他引:8  
多环芳烃(PAHs)是具有严重危害的环境污染物质。介绍PAHs的降解菌,降解机理和PAHs的生物修复方面的研究进展。土壤中PAHs的生物修复被认为是解决污染的有效方法,目前,菲的生物降解途径已经比较清楚,但对结构更为复杂的多环芳烃研究较少。文章还对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

19.
细菌降解萘、菲的代谢途径及相关基因的研究进展   总被引:2,自引:0,他引:2  
多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)是一类在环境中广泛存在的具有毒性的污染物,微生物降解是其在自然界中降解的主要途径,因而尤为重要。随着研究的深入,关于微生物降解PAHs的分子降解机制、途径等的认识逐渐积累。以下对细菌降解萘、菲的研究进展进行了概述,介绍了萘的水杨酸降解途径,菲的水杨酸、邻苯二甲酸及其他降解途径,同时也包括降解过程中涉及的降解基因簇,如nah-like、phn、phd、nid和nag等以及细菌在PAHs胁迫条件下其他相关基因的表达与调节等方面的最新进展。这些进展可为降解菌株的分子及遗传机制研究提供理论依据,将促进通过基因工程优化降解菌、更有效地检测PAHs环境污染及实现PAHs污染的生物修复。  相似文献   

20.
选择苜蓿草和水稻为供试植物,以污染物水平、有机以、专性细菌和真菌为调控因子,进行土壤中矿物油和PAHs的生物修复研究,结果表明,投肥对苜蓿草土壤中矿物油降解有促进作用,但对水稻土壤中矿物油降解无明显作用,投肥均使苜蓿草和水稻土壤中多环芒烃总量(11种列于美国EPA黑名单上的多环芳烃)降解率提高,这一降解促进效果在水稻土壤中好于苜蓿草土壤,有机肥量与苜蓿草根际土著真菌、细菌数量明显呈正相关,但仅与水稻根际土著细菌数量呈明显正相关,两种土壤中实测真菌和细菌总数均与试验投加专性真菌和细菌量无关,水稻土和苜蓿草土壤中3环多环芳烃的降解随投肥量增大而降解率提高,其在水稻土蓑中的效果好于苜蓿草土壤,投肥怪4环多环芳烃的降解并未产生有效作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号