首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 193 毫秒
1.
多环芳烃是一类毒性较大的环境污染物。微生物降解和转化是消除此类污染物的理想方法,已发现多种细菌具有这种功能。主要针对细菌在多环芳烃降解中上游途径的代谢酶及基因簇的组成进行综述,阐述了酶的遗传学特点,并探讨了PAHs代谢基因的进化。这有助于了解PAHs的细菌降解机制,并为有效实施生物修复提供理论依据。  相似文献   

2.
多环芳烃(PAHs)是指两个或两个以上的苯环以线性排列、弯接或簇聚方式构成的一类碳氢化合物。这类化合物广泛分布于环境中, 具有潜在的致畸性、致癌性和遗传毒性。在自然环境中, 好氧细菌对PAHs的生物降解是一种很重要的方式, 凸显其在清除环境PAHs污染物中具有广阔的应用前景。在过去二十多年中, 科学家们已经从基因水平上对好氧细菌降解PAHs的机制进行了深入的研究, 其中包括PAHs降解基因的多样性、与PAHs降解有关的基因以及细菌群体PAHs遗传适应机制等。在此, 就好氧细菌对多环芳烃降解机制的研究进展进行了综述和讨论。  相似文献   

3.
多环芳烃(PAHs)是指两个或两个以上的苯环以线性排列、弯接或簇聚方式构成的一类碳氢化合物.这类化合物广泛分布于环境中,具有潜在的致畸性、致癌性和遗传毒性.在自然环境中,好氧细菌对PAHs的生物降解是一种很重要的方式,凸显其在清除环境PAHs污染物中具有广阔的应用前景.在过去二十多年中,科学家们已经从基因水平上对好氧细菌降解PAHs的机制进行了深入的研究,其中包括PAHs降解基因的多样性、与PAHs降解有关的基因以及细菌群体PAHs遗传适应机制等.在此,就好氧细菌对多环芳烃降解机制的研究进展进行了综述和讨论.  相似文献   

4.
PAHs降解基因及降解酶研究进展   总被引:1,自引:0,他引:1  
由于环境中的多环芳烃(PAHs)具有高遗传毒性和"三致"性(致癌、致畸和致突变),其生物降解基因和降解功能酶研究备受关注.多环芳烃双加氧酶是近年来研究较多的多环芳烃降解的关键酶系之一,主要由细菌产生,可通过氧化反应使多环芳烃开环生成小分子的中间产物并最终氧化成CO2和水.目前,有关这类酶的理化性质、结构特点、功能等的研究相继开展,本文对PAHs降解基因、降解酶的研究现状与发展趋势进行综述.  相似文献   

5.
多环芳烃微生物降解基因的研究进展   总被引:12,自引:2,他引:10  
郑乐  刘宛  李培军 《生态学杂志》2007,26(3):449-454
多环芳烃(PAHs)是环境中普遍存在的一类有机污染物,微生物的降解是PAHs去除的主要途径。近年来,有关PAHs微生物降解途径和代谢产物的研究已有很多报道。小分子PAHs一般可以直接被微生物降解,而大分子PAHs则需要微生物以共代谢的方式降解。在过去20年中,微生物降解PAHs的基因相继被发现,各种基因在调控PAHs降解过程中的功能也越来越清晰。本文概述了PAHs微生物降解基因方面的研究进展,详细介绍了微生物对萘、菲的降解基因,最后对PAHs微生物降解基因的应用前景进行了展望。  相似文献   

6.
不同介质中多环芳烃光降解及与生物耦合降解研究现状   总被引:2,自引:0,他引:2  
多环芳烃(PAHs)是环境中广泛存在的一类有机污染物。它的降解一直是人们关注的课题。光降解就是多环芳烃降解的一种重要形式。对在气相、液相和固相不同介质中的PAHs光降解研究进行了综合论述,重点对PAHs在液相介质的降解速率及影响因素、中间产物及降解机制和反应动力学进行了深入探讨,并介绍了光-生物耦合降解多环芳烃的研究进展。建立系统而有效的PAHs光降解研究技术与方法,是目前当务之急。进一步完善PAHs光降解研究的技术与方法,可更准确地研究PAHs光降解机制及影响因素。  相似文献   

7.
[目的]土壤中的多环芳烃(polycyclic aromatic hydrocarbons, PAHs)可被蔬菜根系吸收并在可食部分积累进而通过食物链威胁人群健康。接种功能内生细菌能有效减低蔬菜中PAHs的积累,而关于其对蔬菜亚细胞组分中PAHs积累的影响却鲜有报道。[方法]采用体外实验,研究了接种具有菲降解功能的菌株Diaphorobacter sp. Phe15对空心菜茎叶亚细胞组分中菲积累的影响及PAHs代谢相关酶活性的响应。[结果]接种Phe15可以可加速空心菜茎叶亚细胞中菲的降解,显著削减空心菜亚细胞组分中菲的含量,接菌后空心菜亚细胞组分中菲降解率达90%以上。此外,接种功能菌Phe15可以影响空心菜亚细胞组分中PAHs代谢相关酶系的活性,空心菜亚细胞水平POD、PPO、C230活性整体得到提高,且酶系活性与空心菜体内菲积累呈负相关关系。[结论]接种具有菲降解功能的菌株Phe15增加了空心菜亚细胞水平PAHs代谢相关酶系活性,进而降低空心菜体内菲的积累,研究结果为利用功能内生细菌削减蔬菜中多环芳烃污染提供了一定的参考和理论依据。  相似文献   

8.
多环芳烃厌氧生物降解研究进展   总被引:2,自引:1,他引:1  
孙娇  张作涛  郭海礁  王慧 《微生物学报》2020,60(12):2844-2861
多环芳烃(PAHs)是环境中广泛分布的一类持久性有机污染物,对生态环境和公众健康具有极大危害。微生物降解是环境中去除多环芳烃污染的有效途径,近年来PAHs厌氧生物降解研究逐渐取代好氧降解成为人们关注的重点。本文从PAHs厌氧生物降解的研究背景出发,从不同厌氧还原反应体系、厌氧降解微生物、PAHs厌氧生物转化途径等方面阐述了PAHs厌氧生物降解的研究概况,归纳了对PAHs厌氧生物降解有积极作用的影响因素,提出了PAHs厌氧降解研究目前存在的问题,并对该领域未来研究方向作了简述和展望。希望为多环芳烃厌氧生物降解与环境修复研究与实践提供参考。  相似文献   

9.
植物法生物修复PAHs和矿物油污染土壤的调控研究   总被引:69,自引:7,他引:62  
选择苜蓿草为供试植物,以污染物含量水平、专性细菌和真菌及有机肥为调控因子,进行了植物法生物修复多环芳烃(PAHs)和矿物油污染土壤的调控研究。结果表明,PAHs和矿物油的降解率与有机肥含量呈正相关,增加有机肥5%,可提高矿物油降解率17.6%~25.6%,PAHs降解率9%.在植物存在条件下,土壤微生物降解功能增强。多环芳烃总量的平均降解率比无植物对照土壤提高2.0%~4.7%.投加特性降解真菌可不同程度地提高土壤PAHs总量和矿物油的降解率。真菌对萤蒽、芘和苯(a)蒽/(艹屈)的降解有明显促进作用。而细菌能明显提高苊稀/芴、蒽和苯(a)萤蒽/苯(k)萤蒽的降解率。  相似文献   

10.
多环芳烃(PAHs)是一类有机污染物,来源广,对人体有害,微生物对环境中多环芳烃的降解有一定优越性。本文主要从降解微生物种类、影响因素、降解启动过程方面进行归纳和总结,针对以往研究工作的不足和存在的问题,指出了今后微生物降解多环芳烃研究中的重点,以求为研究者、管理者和决策者在应用时提供参考。  相似文献   

11.
细菌降解萘、菲的代谢途径及相关基因的研究进展   总被引:2,自引:0,他引:2  
多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)是一类在环境中广泛存在的具有毒性的污染物,微生物降解是其在自然界中降解的主要途径,因而尤为重要。随着研究的深入,关于微生物降解PAHs的分子降解机制、途径等的认识逐渐积累。以下对细菌降解萘、菲的研究进展进行了概述,介绍了萘的水杨酸降解途径,菲的水杨酸、邻苯二甲酸及其他降解途径,同时也包括降解过程中涉及的降解基因簇,如nah-like、phn、phd、nid和nag等以及细菌在PAHs胁迫条件下其他相关基因的表达与调节等方面的最新进展。这些进展可为降解菌株的分子及遗传机制研究提供理论依据,将促进通过基因工程优化降解菌、更有效地检测PAHs环境污染及实现PAHs污染的生物修复。  相似文献   

12.
【目的】研究恶臭假单胞菌B6-2和克雷伯氏菌CW-D3T构建的混合功能菌对多环芳烃的协同修复效能,并探究非离子表面活性剂吐温-80对混菌降解多环芳烃的影响,以期为芳烃化合物的生物修复提供技术参考和理论依据。【方法】通过生长曲线及平板菌落计数法反映混菌生长情况及比例,从而评估混菌降解体系的可行性;通过高效液相色谱法探究各体系以及不同吐温-80浓度下混培体系对多环芳烃的降解效能;最后通过烷烃吸附法测定细胞表面疏水性,以探究吐温-80对混合功能菌降解多环芳烃的影响机制。【结果】等比例混合的2株菌共培养生长状态优于纯培体系,对混合多环芳烃(菲、荧蒽、芘)的降解率分别为33.4%、30.1%、28.6%(7 d),相较于菌CW-D3T,分别提高了1.31倍、1.46倍、1.42倍。混培体系中加入500 mg/L的吐温-80对菲、荧蒽、芘的降解率分别为47.7%、43.2%、38.8%(7 d),相较于对照组各提高了1.55倍、1.38倍、1.31倍,而更高浓度的吐温-80无明显促进作用或轻微抑制。添加吐温-80使菌CW-D3T和混菌的表面疏水性提高,而菌B6-2表面疏水性降低。结合细菌生长量分析...  相似文献   

13.
Microbial biodegradation of polyaromatic hydrocarbons   总被引:3,自引:0,他引:3  
Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites.  相似文献   

14.
多环芳烃降解菌的筛选、鉴定及降解特性   总被引:7,自引:0,他引:7  
【目的】多环芳烃(PAHs)是一类普遍存在于环境中且具有高毒性的持久性有机污染物,高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。研究拟从供试菌株中筛选多环芳烃高效降解菌,并分析其降解特性,为多环芳烃污染环境的微生物修复提供资源保障和科学依据。【方法】采用平板法从25株供试菌株中筛选出以菲和芘为唯一碳源和能源的高效降解菌,经16S rRNA基因序列进行初步鉴定,通过单因素实验法分析其在液体培养基中的降解特性。【结果】筛选出的3株多环芳烃高效降解菌SL-1、02173和02830经16S rRNA基因序列分析,02173和02830分别与假单胞菌属中的Pseudomonas alcaliphila和Pseudomonas corrugate同源性最近,SL-1为本课题组发表新类群Rhizobium petrolearium的模式菌株;降解实验表明,菌株SL-1 3 d内对单一多环芳烃菲(100 mg/L)和芘(50 mg/L)的降解率分别达到100%和48%,5 d后能够降解74%的芘;而其3 d内对混合PAHs中菲和芘的降解率分别为75.89%和81.98%。菌株02173和02830 3 d内对混合多环芳烃中萘(200 mg/L)、芴(50 mg/L)、菲(100 mg/L)和芘(50 mg/L)的降解率均分别超过97%。【结论】筛选出的3株PAHs降解菌SL-1、02173和02830不仅可以高效降解低分子量PAHs,还对高分子量PAHs具有很好的降解潜力。研究表明,由于共代谢作用低分子量多环芳烃可促进高分子量多环芳烃的降解,而此时低分子量多环芳烃的降解将受到抑制。  相似文献   

15.
The aim of this work was to evaluate the effect of a non-biodegradable (Tergitol NP-10) and a biodegradable (Tween-80) surfactant on growth, degradation rate and microbial dynamics of a polycyclic aromatic hydrocarbon (PAHs) degrading consortium (C2PL05) from a petroleum polluted soil, applying cultivable and non cultivable techniques. Growth and degradation rate were significantly lower with Tergitol NP-10 than that with Tween-80. Toxicity did not show any significant reduction with Tergitol NP-10 whereas with Tween-80 toxicity was almost depleted (30%) after 40 days. Regarding to the cultured bacteria, Pseudomonas and Stenotrophomonas groups were dominant during PAH degradation with Tergitol NP-10, whereas Enterobacter and Stenotrophomonas were dominant with Tween-80. DGGE analyses (PRIMER and MDS) showed that bacteria composition was more similar between treatments when PAHs were consumed than when PAHs concentration was still high. Community changes between treatments were a consequence of Pseudomonas sp., Sphingomonas sp., Sphingobium sp. and Agromonas sp.  相似文献   

16.
The bioremediation of polycyclic aromatic hydrocarbon (PAH)‐contaminated sites is not running smoothly, because of the lower activity of PAH‐degrading bacteria in actual bioremediation applications. The phenomenon of “viable but nonculturable” (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH‐degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)‐contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB‐degrading bacteria, scanty information is available on the VBNC bacteria in PAH‐contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH‐biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH‐contaminated sites. This mini‐review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation.

Significance and Impact of the Study

As the vast majority microbial resource, viable but nonculturable (VBNC) bacteria, which showed their potential functions in polycyclic aromatic hydrocarbons (PAHs) biodegradation, can be of great significance in environmental bioremediation. It is therefore important to resuscitate VBNC bacteria for their better capabilities. Meanwhile, preventing the indigenous functional community from entering into the VBNC state will also maintain the high activity of PAH‐degrading bacteria in actual bioremediation applications. Undoubtedly, much more work needs to be done to reveal indigenous micro‐organisms in the VBNC state from the perspective of environmental functions.  相似文献   

17.
选择苜蓿草和水稻为供试植物,以污染物水平、有机以、专性细菌和真菌为调控因子,进行土壤中矿物油和PAHs的生物修复研究,结果表明,投肥对苜蓿草土壤中矿物油降解有促进作用,但对水稻土壤中矿物油降解无明显作用,投肥均使苜蓿草和水稻土壤中多环芒烃总量(11种列于美国EPA黑名单上的多环芳烃)降解率提高,这一降解促进效果在水稻土壤中好于苜蓿草土壤,有机肥量与苜蓿草根际土著真菌、细菌数量明显呈正相关,但仅与水稻根际土著细菌数量呈明显正相关,两种土壤中实测真菌和细菌总数均与试验投加专性真菌和细菌量无关,水稻土和苜蓿草土壤中3环多环芳烃的降解随投肥量增大而降解率提高,其在水稻土蓑中的效果好于苜蓿草土壤,投肥怪4环多环芳烃的降解并未产生有效作用。  相似文献   

18.
Over the past 30 years, research on the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) has resulted in the isolation of numerous genera of bacteria, fungi and algae capable of degrading low molecular weight PAHs (compounds containing three or less fused benzene rings). High molecular weight PAHs (compounds containing four or more fused benzene rings) are generally recalcitrant to microbial attack, although some fungi and algae are capable of transforming these compounds. Until recently, only a few genera of bacteria have been isolated with the ability to utilise four-ring PAHs as sole carbon and energy sources while cometabolism of five-ring compounds has been reported. The focuss of this review is on the high molecular weight PAH benzo[a]pyrene (BaP). There is concern about the presence of BaP in the environment because of its carcinogenicity, teratogenicity and toxicity. BaP has been observed to accumulate in marine organisms and plants which could indirectly cause human exposure through food consumption. This review provides an outline of the occurrence of BaP in the environment and the ability of bacteria, fungi and algae to degrade the compound, including pathways for BaP degradation by these organisms. In addition, approaches for improving microbial degradation of BaP are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号