首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We explored the clinical and molecular characterization of a Chinese family with non-syndromic hearing impairment. Clinical evaluations revealed a possible maternal inheritance pattern, and showed an extremely similar phenotype of hearing loss including the age of onset, severity, and audiometric configuration. Sequence analysis of the mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, which was absent in other family members and 40 Chinese controls. This mutation has previously been reported sporadically in a few individuals with aminoglycoside-induced and non-syndromic hearing loss. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly evolutionarily conserved in mammals. The occurrence of the A827G mutation in these genetically unrelated subjects strongly suggests that this mutation is involved in the pathogenesis of hearing impairment. However, incomplete penetrance of hearing loss indicates that the A827G mutation alone is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression, even though aminoglycosides and GJB2 gene may not contribute to the penetrance of the A827G mutation in this Chinese family. In contrast with the variable phenotype of hearing loss associated with other mitochondrial mutations, all of the patients in our family exhibited strikingly similar clinical features. This discrepancy likely reflects the difference of genetic backgrounds between this pedigree and others.  相似文献   

2.
We report here the clinical, genetic, and molecular characterization of two Chinese families with aminoglycoside induced and non-syndromic hearing impairment. Clinical and genetic evaluations revealed the variable severity and age-of-onset in hearing impairment in these families. Strikingly, there were extremely low penetrances of hearing impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G7444A mutation associated with hearing loss. Indeed, the G7444A mutation in the CO1 gene and the precursor of tRNASer(UCN) gene is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families and 164 Chinese controls. Their mitochondrial genomes belong to the Eastern Asian haplogroups C5a and D4a, respectively. In fact, the occurrence of the G7444A mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. However, there was the absence of other functionally significant mtDNA mutations in two Chinese pedigrees carrying the G7444A mutation. Therefore, nuclear modifier gene(s) or aminoglycoside(s) may play a role in the phenotypic expression of the deafness-associated G7444A mutation in these Chinese pedigrees.  相似文献   

3.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here a systematic mutational screening of the mitochondrial 12S rRNA gene in 128 Chinese pediatric subjects with sporadic aminoglycoside-induced and non-syndromic hearing loss. We show that aminoglycoside ototoxicity accounts for 48% of cases of hearing loss in this Chinese pediatric population. Of the known deafness-associated mutations in this gene, the incidence of the A1555G mutation is ~13% and ~2.9% in this Chinese pediatric population with aminoglycoside-induced and non-syndromic hearing loss, respectively. Furthermore, mutations at position 961 in the 12S rRNA gene account for ~1.7% and 4.4% of cases of aminoglycoside-induced and non-syndromic hearing loss in this Chinese clinical population, respectively. The T1095C mutation has been identified in one maternally inherited family with aminoglycoside-induced and non-syndromic hearing loss. However, the C1494T mutation was not detected in this clinical population. In addition, three variants, A827G, T1005C and A1116G, in the 12S rRNA gene, localized at highly conserved sites, may play a role in the pathogenesis of aminoglycoside ototoxicity. These data strongly suggest that the mitochondrial 12S rRNA is a hot-spot for deafness-associated mutations in the Chinese population.Z. Li and R. Li contributed equally to this work.  相似文献   

4.
We report here the clinical, genetic, and molecular characterization of two Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects. Penetrances of hearing loss in BJ105 and BJ106 pedigrees are 67% and 33%, respectively. In particular, three of 10 affected matrilineal relatives of BJ105 pedigree had aminoglycoside-induced hearing loss, while seven affected matrilineal relatives in BJ105 pedigree and six affected matrilineal relatives in BJ106 pedigree did not have a history of exposure to aminoglycosides. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mtDNA variants belonging to haplogroups F3 and M7b. These variants showed no evolutionary conservation, implying that mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycosides and nuclear backgrounds appear to be major modifier factors for the phenotypic manifestation of the A1555G mutation in these Chinese families.  相似文献   

5.
Guan MX 《Mitochondrion》2011,11(2):237-245
The mitochondrial 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic 1555A>G and 1494C>T mutations at the highly conserved decoding region of the 12S rRNA have been associated with hearing loss worldwide. In particular, these two mutations account for a significant number of cases of aminoglycoside ototoxicity. The 1555A>G or 1494C>T mutation is expected to form a novel 1494C-G1555 or 1494U-A1555 base-pair at the highly conserved A-site of 12S rRNA. These transitions make the human mitochondrial ribosomes more bacteria-like and alter binding sites for aminoglycosides. As a result, the exposure to aminoglycosides can induce or worsen hearing loss in individuals carrying one of these mutations. Biochemical characterization demonstrated an impairment of mitochondrial protein synthesis and subsequent defects in respiration in cells carrying the A1555G or 1494C>T mutation. Furthermore, a wide range of severity, age-at-onset and penetrance of hearing loss was observed within and among families carrying these mutations. Nuclear modifier genes, mitochondrial haplotypes and aminoglycosides should modulate the phenotypic manifestation of the 12S rRNA 1555A>G and 1494C>T mutations. Therefore, these data provide valuable information and technology: (1) to predict which individuals are at risk for ototoxicity; (2) to improve the safety of aminoglycoside antibiotic therapy; and (3) eventually to decrease the incidence of hearing loss.  相似文献   

6.
线粒体DNA突变是引起听力损伤的重要原因之一. 其中,线粒体12S rRNA基因突变与综合征型耳聋和非综合征型耳聋相关. 导致综合征型耳聋的线粒体DNA突变多为异质性,然 而对于非综合征型耳聋突变则多以同质性或高度异质性存在,说明这种分子致病性需要较高的阈值. 位于12S rRNA解码区的A1555G和C1494T突变是造成氨基糖甙类抗生素耳毒性和 非综合征型耳聋常见的分子机制. 这些突变可能造成12S rRNA二级结构的改变,影响线粒体蛋白质的合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍导致耳聋. 但是多数 基因突变的致病机制还仅处于推测阶段. 其它修饰因子如氨基糖甙类抗生素、线粒体单体型、核修饰基因参与了线粒体12S rRNA基因A1555G和C1494T突变相关的耳聋表型表达.  相似文献   

7.
Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.  相似文献   

8.
Tang X  Yang L  Zhu Y  Liao Z  Wang J  Qian Y  Tao Z  Hu L  Wu G  Lan J  Wang X  Ji J  Wu J  Ji Y  Feng J  Chen J  Li Z  Zhang X  Lu J  Guan MX 《Gene》2007,393(1-2):11-19
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic and molecular characterizations of seven Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the variable phenotype of hearing impairment including severity, age-at-onset and audiometric configuration in these subjects. The penetrance of hearing loss in these pedigrees ranged from 3% to 29%, with an average of 13.6%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees varied from 0% to 17%, with an average of 5.3%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA A1555G mutation, in addition to distinct sets of mtDNA polymorphism belonging to East Asian haplogroups B4, D4, D5 and F1, respectively. This suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. Despite the presence of several evolutionary conservative variants in protein-encoding genes, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these seven Chinese families. These suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the A1555G mutation in those Chinese families with very low penetrance of hearing loss. However, aminoglycosides appear to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families.  相似文献   

9.
We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family.  相似文献   

10.
Mutations in mitochondrial DNA (mtDNA) are associated with sensorineural hearing loss. In this study, we traced the origin of the 12S rRNA C1494T mutation through analysis of the clinical, genetic, and molecular characteristics of 13 Han Chinese pedigrees with aminoglycoside-induced and non-syndromic bilateral hearing loss that were selected by C1494T screening in 3133 subjects with non-syndromic hearing impairment from 27 regions of China (13/3133). Clinical evaluation revealed the variable phenotypes of hearing impairment including severity, age-of-onset, and audiometric configuration in these subjects. Through the whole mitochondrial genome DNA sequence analysis, we identified two evolutionarily conservative variants in protein-coding genes: tRNAAla T 5628C and tRNATyr A5836G mutations. However, the pedigrees with these mutations did not have a higher or lower penetrance of deafness than in other pedigrees. These results suggested that both T 5628C and A5836G mutations might not significantly modify the manifestation of the C1494T mutation. Sequencing analysis of the whole mitochondrial genome of the probands showed that 13 pedigrees from seven different provinces were classified into 10 haplogroups by the distinct sets of mtDNA polymorphisms, including haplogroups A, B, D, D4, D4b2, F1, M, M7c, N9a1, and H2b. This result suggested that the C1494T mutation occurred sporadically with multi-origins through the evolution of the mtDNA in China, and these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the C1494T mutation in these Chinese families with different penetrance of hearing loss. In addition, the lack of a significant mutation in the GJB2 gene ruled out the possible involvement of GJB2 in the phenotypic expression of the C1494T mutation in those affected subjects. Therefore, the aminoglycosides is solo well-established factor to contribute to the deafness manifestation of the C1494T mutation, and prevention by avoiding the administration of aminoglycosides in individuals carrying C1494T mutation is the most effective way to protect their vulnerability to deafness.  相似文献   

11.
Mutations in mitochondrial DNA (mtDNA), particularly those in the 12S rRNA gene, have been shown to be associated with sensorineural hearing loss. Here we report the clinical and sequence analysis of the entire mitochondrial genome in three Chinese subjects with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation showed a variable phenotype of hearing impairment including the age of onset and audiometric configuration in these subjects. Sequence analysis of the complete mitochondrial genomes in three subjects showed the distinct sets of mtDNA polymorphism, in addition to the identical mitochondrial 12S rRNA T1095C mutation. This mutation was previously identified to be associated with hearing impairment in three families from different genetic backgrounds. The T1095C mutation was absent in 364 Chinese control. In fact, the occurrence of the T1095C mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. Among other nucleotide changes, the A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 exhibited a high evolutionary conservation. These data suggest that the T1095C mutation may be associated with aminoglycoside-induced and non-syndromic hearing impairments and A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 may contribute to the phenotypic expression of the T1095C mutation in these subjects.  相似文献   

12.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of four Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss (5.2%, 4.8%, 4.2%, and 13.3%, respectively, and with an average 8% penetrance). In particular, four of all five affected matrilineal relatives of these pedigrees had aminoglycoside-induced hearing loss. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical homoplasmic A1555G mutation, associated with hearing impairment in many families from different genetic backgrounds. The fact that mtDNA of those pedigrees belonged to different haplogroups R9a, N9a, D4a, and D4 suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. These data imply that the nuclear background or/and mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycoside appears to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families.  相似文献   

13.
We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.  相似文献   

14.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness.  相似文献   

15.
Chen J  Yang L  Yang A  Zhu Y  Zhao J  Sun D  Tao Z  Tang X  Wang J  Wang X  Tsushima A  Lan J  Li W  Wu F  Yuan Q  Ji J  Feng J  Wu C  Liao Z  Li Z  Greinwald JH  Lu J  Guan MX 《Gene》2007,401(1-2):4-11
We report here the clinical, genetic and molecular characterization of three Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 28%, 20%, and 15%, with an average of 21%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 21%, 13% and 8%, with an average of 14%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T mutation, in addition to distinct sets of mtDNA polymorphism belonging to Eastern Asian haplogroups F1a1, F1a1 and D5a2, respectively. This suggested that the C1494T mutation occurred sporadically and multiplied through evolution of the mtDNA. The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggests that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the C1494T mutation in those Chinese families. In addition, the lack of significant mutation in the GJB2 gene ruled out the possible involvement of GJB2 in the phenotypic expression of the C1494T mutation in those affected subjects. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.  相似文献   

16.
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.  相似文献   

17.
Yao YG  Salas A  Bravi CM  Bandelt HJ 《Human genetics》2006,119(5):505-515
In a number of recent studies, we summarized the obvious errors and shortcomings that can be spotted in many (if not most) mitochondrial DNA (mtDNA) data sets published in medical genetics. We have reanalyzed here the complete mtDNA genome data published in various recent reports of East Asian families with hearing impairment, using a phylogenetic approach, in order to demonstrate the persistence of lab-specific mistakes in mtDNA genome sequencing in cases where those caveats were (deliberately) neglected. A phylogenetic reappraisal of complete mtDNAs with mutation A1555G (or G11778A) indeed supports the suggested lack of association between haplogroup background and phenotypic presentation of these mutations in East Asians. In contrast, the claimed pathogenicity of mutation T1095C in Chinese families with hearing impairment seems unsupported, basically because this mutation is rather basal in the mtDNA phylogeny, being specific to haplogroup M11 in East Asia. The roles of other haplogroup specific or associated variants, such as A827G, T961C, T1005C, in East Asian subjects with aminoglycoside-induced and non-syndromic hearing loss are also unclear in view of the known mtDNA phylogeny.  相似文献   

18.
Mutations in mitochondrial 12S rRNA gene are one of the most important causes of aminoglycoside-induced and nonsyndromic hearing loss. Here we report the characterization of one Han Chinese pedigree with aminoglycoside-induced and nonsyndromic hearing loss.This Chinese family carrying the 12S rRNA A1555G mutation exhibited high penetrance and expressivity of hearing impairment. In particular, penetrances of hearing loss in this family pedigree were 43.8% and 25%, respectively, when aminoglycoside-induced heating loss was included or excluded. Mutational analysis of entire mitochondrial genomes in this family showed the homoplasmic A1555G mutation and a set of variants belonging to haplogroup Y2. Of these, the A14693G variant occurred at the extremely conserved nucleotide (conventional position 54) of the TψC-loop of tRNAGlu and was absent in 156 Chinese controls. Nucleotides at position 54 of tRNAs are often modified, thereby contributing to the structural formation and stabilization of functional tRNAs. Thus, the structural alteration of tRNA by the A14693G variant may lead to a failure in tRNA metabolism and impair mitochondrial protein synthesis, thereby worsening mitochondrial dysfunctions altered by the A1555G mutation. Therefore, the tRNAalu A14693G variant may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated AI555G mutation in this Chinese pedigree.  相似文献   

19.
We report here the characterization of a Japanese family with maternally transmitted nonsyndromic hearing loss. Fourteen of 21 matrilineal relatives in this family exhibited early or late-onset/progressive but noncongenital hearing impairment with a wide range of severity, ranging from severe to normal hearing. The age-of-onset varies from 3 to 30 years. Sequence analysis of the complete mitochondrial genome in one matrilineal relative of this family revealed the presence of T7511C mutation and other variants. However, the levels of heteroplasmy of T7511C mutation did not correlate with the severity and age-of-onset of hearing loss in this family. Furthermore, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. The absence of the ND1 T3308C and tRNA(Ala) T5655C mutations in this Japanese family but the presence of these mtDNA mutations in an African family with a high penetrance seems to account for different penetrance between two pedigrees. Incomplete penetrance in this family indicates the involvement of modulatory factors in the phenotypic expression of hearing impairment associated with the T7511C mutation. Here, two known variants G79A and G109A in the GJB2 gene were identified in the hearing-impaired and normal hearing matrilineal relatives of this Japanese family. However, the lack of correlation in the severity and age-of-onset in hearing impairment with homozygous or heterozygous G79A or G109A or combination of both variants in the GJB2 gene in those subjects with hearing impairment and normal hearing indicates that those variants of GJB2 gene may not be a modifier of the phenotypic effects of the T7511C mutation in those subjects. Thus, the phenotypic variability in this family is due to the involvement of other modifier factor(s).  相似文献   

20.
Mutations in mitochondrial 12S rRNA gene are one of the most important causes of aminoglycoside-induced and nonsyndromic hearing loss. Here we report the characterization of one Han Chinese pedigree with aminoglycoside-induced and nonsyndromic hearing loss. This Chinese family carrying the 12S rRNA A1555G mutation exhibited high penetrance and expressivity of heating impairment. In particular, penetrances of hearing loss in this family pedigree were 43.8% and 25%, respectively, when aminoglycoside-induced heating loss was included or excluded. Mutational analysis of entire mitochondrial genomes in this family showed the homoplasmic A1555G mutation and a set of variants belonging to haplogroup Y2. Of these, the A14693G variant occurred at the extremely conserved nucleotide (conventional position 54) of the TψC-loop of tRNA^Clu and was absent in 156 Chinese controls. Nucleotides at position 54 of tRNAs are often modified, thereby contributing to the structural formation and stabilization of functional tRNAs. Thus, the structural alteration of tRNA by the A14693G variant may lead to a failure in tRNA metabolism and impair mitochondrial protein synthesis, thereby worsening mitochondrial dysfunctions altered by the A1555G mutation. Therefore, the tRNA^Glu A14693G variant may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated A1555G mutation in this Chinese pedigree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号