首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (< 20 degrees C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.  相似文献   

2.
Jensen  H. S.  Kristensen  P.  Jeppesen  E.  Skytthe  A. 《Hydrobiologia》1992,235(1):731-743
Analysis of Danish lakes showed that both mean winter and mean summer concentrations of lake water total phosphorus in the trophogenic zone correlated negatively with the total iron to total phosphorus ratio (Fe:P) in surface sediments. No correlation was found between the water total phosphorus concentration and either the sediment phosphorus concentration alone or with sediment calcium concentration. The increase in total phosphorus from winter to summer, which is partly a function of net internal P-loading, was lowest in lakes with high Fe:P ratios in the surface sediment.A study of aerobic sediments from fifteen lakes, selected as representative of Danish lakes with respect to the sediment Fe and phosphorus content, showed that the release of soluble reactive phosphorus was negatively correlated with the surface sediment Fe:P ratio. Analysis of phosphate adsorption properties of surface sediment from 12 lakes revealed that the capability of aerobic sediments to buffer phosphate concentration correlated with the Fe:P ratio while the maximum adsorption capacity correlated with total iron. Thus, the Fe:P ratio may provide a measure of free sorption sites for orthophosphate ions on iron hydroxyoxide surfaces.The results indicate that provided the Fe:P ratio is above 15 (by weight) it may be possible to control internal P-loading by keeping the surface sediment oxidized. Since the Fe:P ratio is easy to measure, it may be a useful tool in the management of shallow lakes.  相似文献   

3.
Phosphorus release from the sediments of very shallow lakes, the Norfolk Broads, can be as high as 278 mgP m-2 d-1. These high rates are associated with high total sediment Fe:P ratios and occur when sulphide from sulphate reduction removes Fe(II) from the pore water. There is also evidence that bioturbation from benthic chironomids can enhance phosphorus release rates, particularly in sediments low in total iron. The release of phosphorus from the sediments of these lakes is delaying restoration following the control of phosphorus from sewage discharges. Biomanipulation is being used in these lakes to create clear water and re-establish aquatic macrophytes. This removal of fish has allowed larger populations of benthic chironomid larvae to develop which may result in an increase in the rate of phosphorus release and changes to the pore profiles of dissolved phosphorus, soluble iron and free sulphide.  相似文献   

4.
Seasonal microbial activity in Antarctic freshwater lake sediments   总被引:2,自引:1,他引:2  
Summary Seasonal fluctuations in population numbers and activity were monitored in bottom sediments of oligotrophic Moss Lake, mesotrophic Heywood Lake and eutrophic Amos Lake on Signy Island, South Orkney Islands, during 1976–78. Heywood and Amos Lakes became anoxic under winter ice cover (8–10 months) and significant populations of facultatively anaerobic heterotrophs and sulphate-reducing bacteria developed. In contrast, Moss Lake surface sediments never became anoxic and anaerobic bacteria were virtually absent. Direct microscopic counts and viable plate counts fluctuated relatively little in Moss Lake throughout the study period, whereas distinct seasonality was observed in the more enriched lake systems. Similarly, measurements of oxygen consumption and dark 14CO2 uptake by mud cores indicated no obvious seasonal fluctuations in Moss Lake data, in contrast to the marked seasonal pattern observed in data from the other lakes. In these latter systems, oxygen uptake rates were highest in summer (c. 400 mg O2 m-2 d-1) and virtually undetectable in winter. Comparison of oxygen uptake with oxygen concentration and temperature revealed differences, between lakes, in uptake response to oxygen concentration, whereas uptake response to temperature did not differ significantly between lakes. Chemosynthetic production in the Signy Island lake sediments was in the range 1.6–35.3 g C m-2 (mud surface) d-1 with highest values recorded in Amos Lake under winter ice cover and anoxic conditions. The findings from this and earlier studies of the three lakes have been assembled to indicate the relative importance of green plants and bacteria to the carbon cycle in these permanently cold systems.  相似文献   

5.
Sulfate control of phosphorus availability in lakes   总被引:9,自引:4,他引:5  
During summer stratification large amounts of phosphorus (P) accumulate in anoxic bottom waters of many lakes due to release of P from underlying sediments. The availability to phytoplankton of this P is inversely related to the Fe:P ratio in bottom waters. Using data from 51 lakes, we tested the hypothesis that sulfate concentration in lake water may be critical in controlling the Fe:P ratio in anoxic bottom waters. Results showed that Fe:P ratios in bottom waters of lakes were significantly (p<0.001) related to surface water sulfate concentrations. The higher Fe:P ratios in low sulfate systems is due not only to higher iron concentrations in anoxic bottom waters but also to lower P concentrations in anoxic waters. Thus, our results suggest that anthropogenically induced increases in sulfate concentrations of waters (e.g. from fossil fuel burning) may have a double effect on P cycling in lakes. Higher sulfate concentrations can both increase the magnitude of P release from sediments as well as increase the availability of P released from sediments into anoxic bottom waters.  相似文献   

6.
The Salton Sea is a hypereutrophic, saline lake in the desert of southern California. Like many lakes, the primary productivity of the Sea is limited by phosphorus. However, unlike most lakes, the release of P from the sediments is not controlled by the reductive dissolution of Fe(III)-oxide minerals. Most of the iron in the sediments of the Salton Sea is present as Fe(II)-sulfides and silicates. Rather, the sediments are dominated by calcite which is actively precipitating due to alkalinity production via sulfate reduction reactions. We hypothesized that calcite could be an important sink for phosphorus released from the decomposing organic matter. In this work we evaluated the potential for phosphate to coprecipitate with calcite formed in simulated Salton Sea sediment pore water. At calcite precipitation levels and P concentrations typical for the Salton Sea pore water, coprecipitation of P removed 82–100% of the dissolved phosphorus. The amount of P incorporated into the calcite was independent of temperature. The results of this work indicate that the internal loading of P within the Salton Sea is being controlled by calcite precipitation. Management of external P loading should have an immediate impact on reducing algae blooms in the Salton Sea. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife, and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

7.
不同固磷方式对巢湖沉积物磷吸附行为的影响   总被引:3,自引:0,他引:3  
内源磷负荷将严重阻碍富营养化湖泊的恢复,其控制技术的关键在于有效增强沉积物吸附磷的能力,而相关研究相对较少。研究以典型富营养化湖泊(巢湖)严重污染区域的沉积物为实验对象,系统比较了常规固磷方式(施用CaCl2、FeCl3、AlCl3与曝气)对沉积物磷吸附行为和间隙水溶解态可反应磷(SRP)浓度的影响。结果表明:施用不同剂量的CaCl2之后,沉积物磷最大吸附量和吸附能均无显著变化,间隙水SRP浓度和沉积物磷平衡浓度(EPC0)仅有较小幅度的下降;FeCl3和AlCl3的施用可明显增加沉积物磷的最大吸附量和吸附能,同时有效降低间隙水SRP浓度和EPC0值,即沉积物显示更强的从水中吸附磷的能力。当同处低剂量水平时,铁能更有效地降低沉积物EPC0值;反之,曝气对沉积物最大吸附量和吸附能均无显著影响,却明显提高了间隙水SRP浓度和沉积物EPC0值,进而导致更强的磷释放风险。故建议将适量铁的施用作为富营养化湖泊沉积物修复的有效技术,且慎用曝气处理。  相似文献   

8.
长江中下游部分湖泊沉积物碱性磷酸酶分布及其作用研究   总被引:5,自引:0,他引:5  
沉积物磷负荷在湖泊富营养化的发生与恢复过程中具有关键作用,其释放受物理、化学与生物机制调节,而碱性磷酸酶催化有机磷的矿化,故当为促进沉积物磷循环的重要因素。本文讨论了长江中下游部分湖泊沉积物碱性磷酸酶分布及其在磷释放过程中的作用。五里湖疏浚与未疏浚区以及太湖、巢湖、龙感湖、东湖、月湖、龙阳湖、莲花湖等不同湖泊的不同区域表层沉积物碱性磷酸酶活性(APA)明显不同,这种空间异质性与湖泊富营养化程度相联系。此外,APA随沉积物的深度递减,或在中间与较深层次出现峰值,且具明显的季节性。上述事实以及APA对抑制剂的不同响应方式暗示酶存在形态的多样性(同工酶)。苯丙氨酸(Phe)明显提高月湖与五里湖沉积物APA,沉积物与Phe相互作用并静置一天之后,生物可利用性磷(SRP)的释放量明显增加。再者,Phe可抑制月湖沉积物APA,沉积物与Phe相互作用并静置一天之后,SRP释放量无明显变化,溶解有机磷(DOP)的释放量则明显增加。因此,释放的SRP部分来自某些活跃的有机磷的酶促水解,沉积物碱性磷酸酶在内源磷的释放以及富营养化过程中具有重要作用。  相似文献   

9.
In order to assess the importance of nitrate-dependent Fe(II) oxidation and its impact on the growth physiology of dominant Fe oxidizers, we counted these bacteria in freshwater lake sediments and studied their growth physiology. Most probable number counts of nitrate-reducing Fe(II)-oxidizing bacteria in the sediment of Lake Constance, a freshwater lake in Southern Germany, yielded about 105 cells mL−1 of the total heterotrophic nitrate-reducing bacteria, with about 1% (103 cells mL−1) of nitrate-reducing Fe(II) oxidizers. We investigated the growth physiology of Acidovorax sp. strain BoFeN1, a dominant nitrate-reducing mixotrophic Fe(II) oxidizer isolated from this sediment. Strain BoFeN1 uses several organic compounds (but no sugars) as substrates for nitrate reduction. It also reduces nitrite, dinitrogen monoxide, and O2, but cannot reduce Fe(III). Growth experiments with cultures amended either with acetate plus Fe(II) or with acetate alone demonstrated that the simultaneous oxidation of Fe(II) and acetate enhanced growth yields with acetate alone (12.5 g dry mass mol−1 acetate) by about 1.4 g dry mass mol−1 Fe(II). Also, pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans strains can oxidize Fe(II) with nitrate, whereas Pseudomonas fluorescens and Thiobacillus denitrificans strains did not. Our study demonstrates that nitrate-dependent Fe(II) oxidation contributes to the energy metabolism of these bacteria, and that nitrate-dependent Fe(II) oxidation can essentially contribute to anaerobic iron cycling.  相似文献   

10.
The basic aim of this study was to analyse the influence of calcium on the Chl–TP relationship and to apply the findings to improve dynamic (mechanistically-based) modelling of phosphorus and lake eutrophication. We have analysed long-term data from 73 lakes. The influences of calcium found in these statistical analyses have been integrated into a dynamic foodweb model, the LakeWeb-model, which also includes a mass-balance model for phosphorus. Differences in the model outcome between simulations without and with considerations to the role of calcium are discussed. We can conclude that calcium is an important factor influencing both the Chl–TP relationship and Secchi depths in mesotrophic and eutrophic lakes. Our results also indicate that lakes with long-term median Ca-concentration between 10–30mg/l function as hardwater lakes. The results also stress the importance of taking a holistic view of lakes since the bedrock, soils and land-use activities in the catchment influence the calcium concentration in lakes and therefore the phosphorus cycle, water clarity and the productivity of a given lake. The predictive power of the Chl–TP regression increases markedly if hardwater lakes are omitted from the model domain. For lake foodweb and mass-balance modelling, we show that the inclusion of the presented calcium moderator clearly improved the predictions of lake TP-concentrations in water and sediments, chlorophyll and Secchi depths in Lake Erken, a hardwater lake in Sweden.  相似文献   

11.
The copepod Pseudoboeckella poppei (Daday) (Calanoida, Centropagidae) was sampled from Sombre and Heywood Lakes on Signy Island, Antarctica (60° S, 45° W) between January 1984 and March 1985. Sombre Lake is clear and oligotrophic with little phytoplankton and a bottom sediment low in organic content. By contrast Heywood Lake is turbid and mesotrophic; a substantial phytoplankton develops in summer and the bottom sediments are comparatively rich in organics. Both lakes freeze over for much of the year, forcing the copepods to adopt a benthic feeding strategy over winter. Adult Pseudoboeckella feed on phytoplankton when this is available, but also on detritus, diatoms and short algal filaments stirred up from the sediment. In Heywood Lake, male copepods show a smooth seasonal trend in lipid content with lipid being synthesised in early summer and utilised in late summer and winter. The summer increase in lipid content is associated with an increase in dry weight. Female lipid contents show evidence of two peaks of egg production. In Sombre Lake both male and female copepods increase in size during summer and show a wider range of lipid contents than in Heywood Lake; it is likely that this is due to the poorer winter feeding conditions which necessitate the synthesis of a much larger store of reserves during the summer. In contrast to marine calanoid copepods, lipid stores are exclusively triacylglycerol with no trace of wax ester.  相似文献   

12.
Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003–2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)~P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87–95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)~P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)~P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication.  相似文献   

13.
Acidic volcanic waters are naturally occurring extreme habitats that are subject of worldwide geochemical research but have been little investigated with respect to their biology. To fill this gap, the microbial ecology of a volcanic acidic river (pH approximately equal to 0-1.6), Rio Agrio, and the recipient lake Caviahue in Patagonia, Argentina, was studied. Water and sediment samples were investigated for Fe(II), Fe(III), methane, bacterial abundances, biomass, and activities (oxygen consumption, iron oxidation and reduction). The extremely acidic river showed a strong gradient of microbial life with increasing values downstream and few signs of life near the source. Only sulfide-oxidizing and fermentative bacteria could be cultured from the upper part of Rio Agrio. However, in the lower part of the system, microbial biomass and oxygen penetration and consumption in the sediment were comparable to non-extreme aquatic habitats. To characterize similarities and differences of chemically similar natural and man-made acidic waters, our findings were compared to those from acidic mining lakes in Germany. In the lower part of the river and the lake, numbers of iron and sulfur bacteria and total biomass in sediments were comparable to those known from acidic mining lakes. Bacterial abundance in water samples was also very similar for both types of acidic water (around 10(5) mL(-1)). In contrast, Fe(II) oxidation and Fe(III) reduction potentials appeared to be lower despite higher biogenic oxygen consumption and higher photosynthetic activity at the sediment-water interface. Surprisingly, methanogenesis was detected in the presence of high sulfate concentrations in the profundal sediment of Lake Caviahue. In addition to supplementing microbiological knowledge on acidic volcanic waters, our study provides a new view of these extreme sites in the general context of aquatic habitats.  相似文献   

14.
The geochemical response of sediments to increased nutrient input to an Alaskan, arctic lake was examined using direct measurements of sediment-water chemical fluxes. An unexpected increase in Fe flux occurred when sediments were exposed to high incident radiation and nutrient concentrations. Correlation between light and acid-soluble Fe concentrations suggests that photoreduction of Fe(III) oxides may occur, but nutrient addition enhanced the effect indicating that primary productivity was also important. The processes controlling the flux of Fe from sediments in this lake were complex and included the redox potential (dissolved oxygen concentration) of the water, quality of organic matter present in the sediment, light, and nutrients supplied from the sediments and/or water column. These four factors together with the possibility of direct uptake of Fe by phytoplankton and the possible release of algal reductants may contribute to Fe cycling in this lake.  相似文献   

15.
Nutrient ratios have been related to nutrient limitation of algal growth in lakes. Retention of nutrients in lakes, by sedimentation and by denitrification, reduces the nutrient concentrations in the water column, thereby enhancing nutrient limitation. Differential retention of nitrogen and phosphorus alters their ratios in lakes and thereby contributes to determine whether nitrogen or phosphorus limits algal growth. We examined the relationships between differential nutrient retention, nutrient ratios, and nutrient limitation in Lake Brunner, a deep oligotrophic lake. The observed retention of nitrogen (20%) and phosphorus (47%) agreed with predictions by empirical equations from literature. As a result of differential retention with a much larger proportion of phosphorus retained than that of nitrogen, the nitrogen:phosphorus ratio was higher in the lake (69) than in the inflows (46). While the mean ratio in the inflows suggested no or only moderate phosphorus limitation, the lake appeared to be severely phosphorus limited. Combining empirical equations from literature that predict nitrogen and phosphorus retention suggests that the nitrogen:phosphorus ratio is enhanced by greater retention of phosphorus compared to nitrogen only in deep lakes with relatively short residence times, such as Lake Brunner. In contrast, in most lakes differential retention is expected to result in lower nitrogen:phosphorus ratios.  相似文献   

16.
Sediment samples obtained from three freshwater lakes and off-shore coastal marine waters on Signy Island, South Orkney Islands, Antarctica have been inoculated into selective enrichment media for purple non-sulphur bacteria (Rhodospirillaceae). From the freshwater sediments strains of Rhodopseudomonas sphaeroides (1), Rhodopseudomonas palustris (1), Rhodospirillum fulvum (1), Rhodospirillum molischanum (1) and Rhodomicrobium vannielii (3) have been isolated. The only purple non-sulphur bacteria obtained from Lake 10 (Amos lake) were strains of Rhodomicrobium vannielii which were able to tolerate hydrogen sulphide (up to 0.04% w/v) found in this lake. Growth of all the other isolates is inhibited by the presence of hydrogen sulphide. Marine sediments yielded strains of Rhodopseudomonas palustris and Rhodomicrobium vannielii . All the isolates grow optimally at temperatures between 25 and 30 °C. mean generation times vary between 8 and 10.7 h depending on species. There is no evidence of cold adaptation in any of the strains studied.  相似文献   

17.
环境因子对杭州西湖沉积物各形态磷释放的影响   总被引:1,自引:0,他引:1  
对西湖沉积物的磷形态、粒径组成、化学组成进行了分析, 模拟研究了上覆水磷含量、光照、pH、温度、水动力条件等不同环境因子对西湖沉积物各形态磷释放的影响。结果表明, 上覆水为蒸馏水时的最大释磷量约为底泥-湖水系统的1.15倍, 且释放形态均以IP中的Fe/Al-P为主。在蔽光条件下的最大TP释放量约为光照条件下最大TP释放量的1.35倍。pH 是影响磷释放的重要因素, 在碱性条件下, 促进Fe/Al-P的释放; 在酸性条件下, 促进Ca-P 的释放。在高温条件下沉积物的释磷量会高于低温条件下的释磷量。沉积物各形态磷的释放量在15h后逐渐趋于平衡扰动状态达到平衡时TP释放量是静态释放平衡状态的1.61倍。研究结果旨在探讨不同环境因子对湖泊沉积物磷迁移转化的生态环境效应, 预测西湖内源磷释放的发展趋势, 为控制沉积物内源污染提供理论基础。  相似文献   

18.
Bacteria are crucial components in lake sediments and play important role in various environmental processes. Urban lakes in the densely populated cities are often small, shallow, highly artificial and hypereutrophic compared to rural and natural lakes and have been overlooked for a long time. In the present study, bacterial community compositions in surface sediments of three urban lakes (Lake Mochou, Lake Qianhu and Lake Zixia) in Nanjing City, China, were investigated using the terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries. Remarkable differences in the T-RFLP patterns were observed in different lakes or different sampling stations of the same lake. Canonical correspondence analysis indicated that total nitrogen (TN) had significant effects on bacterial community structure in the lake sediments. Chloroflexi were the most dominant bacterial group in the clone library from Lake Mochou (21.7?% of the total clones) which was partly associated with its higher TN and organic matters concentrations. However, Bacteroidetes appeared to be dominated colonizers in the sediments of Lake Zixia (20.4?% of the total clones). Our study gives a comprehensive insight into the structure of bacterial community of urban lake sediments, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystems.  相似文献   

19.

Iron reduction mediated by Fe(III)-reducing bacteria (FeRB) occurs in aqueous environments and plays an essential role in removing contaminates in polluted freshwater lakes. Two model FeRB species, Shewanella and Geobacter, have been intensively studied because of their functions in bioremediation, iron reduction, and bioelectricity production. However, the abundance and community diversity of Shewanella and Geobacter in eutrophic freshwater lakes remain largely unknown. In this work, the distribution, abundance and biodiversity of Shewanella, Geobacter and other FeRB in the sediments of a heavily polluted lake, Chaohu Lake, China, across four successive seasons were investigated. Shewanella, Geobacter, and other FeRB were found to be widely distributed in the sediment of this heavily eutrophic lake. Geobacter was abundant with at least one order of magnitude more than Shewanella in cold seasons. Three Shewanella-related operational taxonomic units were detected and sixty one Geobacter-related operational taxonomic units were grouped into three phylogenetic clades. Thiobacillus, Desulfuromonas and Geobacter were identified as the main members of FeRB in the lake sediments. Interestingly, nutrients like carbon, nitrogen, and phosphorus were found to be the key factors governing the abundance and diversity of FeRB. Total FeRB, as well as Geobacter and Shewanella, were more abundant in the heavily eutrophic zone than those in the lightly eutrophic zone. The abundance and diversity of FeRB in the sediments of freshwater lakes were highly related with the degree of eutrophication, which imply that FeRB might have a great potential in alleviating the eutrophication and contamination in aqueous environments.

  相似文献   

20.
Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)‐con‐taining anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(III) reduction was the terminal electron‐accepting process removed all the pore‐water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. In a solution buffered at pH 7, Mn(IV) oxidized Fe(II) to amorphic Fe(III) oxide. Mn(IV) naturally present in oxic freshwater sediments also rapidly oxidized Fe(II). A pure culture of a dissimilatory FE(III)‐ and Mn(FV)‐reducing organism isolated from the sediments reduced Fe(III) to Fe(II) in the presence of Mn(IV) when ferrozine was present to trap Fe(II) before Mn(IV) oxidized it. Depth profiles of dissolved iron and manganese reported in previous studies suggest that Fe(II) diffusing up from the zone of Fe(III) reduction is consumed within the Mn(IV)‐reducing zone. These results demonstrate that preferential reduction of Mn(IV) by Fe(III)‐reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)‐containing sedments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号