首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jensen  H. S.  Kristensen  P.  Jeppesen  E.  Skytthe  A. 《Hydrobiologia》1992,235(1):731-743
Analysis of Danish lakes showed that both mean winter and mean summer concentrations of lake water total phosphorus in the trophogenic zone correlated negatively with the total iron to total phosphorus ratio (Fe:P) in surface sediments. No correlation was found between the water total phosphorus concentration and either the sediment phosphorus concentration alone or with sediment calcium concentration. The increase in total phosphorus from winter to summer, which is partly a function of net internal P-loading, was lowest in lakes with high Fe:P ratios in the surface sediment.A study of aerobic sediments from fifteen lakes, selected as representative of Danish lakes with respect to the sediment Fe and phosphorus content, showed that the release of soluble reactive phosphorus was negatively correlated with the surface sediment Fe:P ratio. Analysis of phosphate adsorption properties of surface sediment from 12 lakes revealed that the capability of aerobic sediments to buffer phosphate concentration correlated with the Fe:P ratio while the maximum adsorption capacity correlated with total iron. Thus, the Fe:P ratio may provide a measure of free sorption sites for orthophosphate ions on iron hydroxyoxide surfaces.The results indicate that provided the Fe:P ratio is above 15 (by weight) it may be possible to control internal P-loading by keeping the surface sediment oxidized. Since the Fe:P ratio is easy to measure, it may be a useful tool in the management of shallow lakes.  相似文献   

2.
Some aspects of iron cycling in maritime antarctic lakes   总被引:1,自引:1,他引:0  
Iron occurs in extremely high concentrations in certain maritime Antarctic freshwater lakes which seasonally develop an anoxic zone. In oligotrophic Sombre Lake the data show that Fe(II) precipitates as Fe(III) oxyhydroxides which bind phosphorus and return it to the sediments. In nutrient-enriched Amos lake, significant quantities of sulphide are also produced and this binds a proportion of the released Fe(II) so reducing the ratio of total iron to phosphorus at the redox boundary where the oxyhydroxides are formed. A proportion of the sediment-released phosphorus therefore reaches the upper waters of this lake (unlike in Sombre Lake) and provides the initial nutrient source for under-ice phytoplankton development in spring. Iron-reducing bacteria have been isolated, from Sombre Lake sediments, which apparently utilise the abundant Fe(III) oxyhydroxides. From thermodynamic considerations (assuming Fe(III) is not limiting) these should outcompete sulphate reducers and methanogens (both previously reported from Sombre and Amos Lakes) and could therefore constitute an important component of the anaerobic mineralisation of organic carbon in such lakes.  相似文献   

3.
Studies of sulphate reduction and rates of sulphide formation were made in the bottom sediments of the alpine lakes Lago Maggiore and Lago Lugano. The stock of sulphide sulphur was found to be 500–1500 mg/l. The rate of sulphate reduction was 1–10 mg S/l/day. Total numbers of bacteria in sediments varied from 0,5 to 5.109 cells/cm3 of wet mud. Chemical analyses of the carbon, nitrogen and phosphorus were also made. The possible influence of pollution on the sulphur cycle in these lakes is discussed.  相似文献   

4.
Being both stable carbon sinks and greenhouse gas sources, boreal lake sediments represent significant players in carbon (C) cycling. The release of dissolved organic carbon (DOC) into anoxic water is a widespread phenomenon in boreal lakes with impact on sediment C budgets. The association of OC with iron (Fe) is assumed to play an important role for this anoxic OC release via the dissimilatory reduction of Fe, but also to influence the stabilization of OC in sediments. To investigate the role of Fe–OC association for OC dynamics in different boreal lake sediments, we compared the content of Fe-bound OC [Fe–OC, defined as citrate bicarbonate dithionite (CBD) extractable OC] and the extent of reductive dissolution of solid-phase Fe and OC at anoxia. We found high among-lake variability in Fe–OC content, and while the amount of Fe–OC was high in three of the lakes (980–1920 µmol g?1), the overall contribution of Fe–OC to the sediment OC pool in all study lakes was not higher than 11%. No linkages between the amount of the Fe–OC pool and lake or sediment characteristics (e.g., pH, DOC concentration, sediment OC content, C:N ratio) could be identified. The observed release of OC from anoxic sediment may be derived from dissolution of Fe–OC in the lake sediments with high Fe–OC, but in other lake sediments, OC release during anoxia exceeded the sediment Fe–OC pool, indicating low contribution of reductive Fe dissolution to OC release from these lake sediments. The range of the investigated boreal lakes reflects the high variability in the size of the sediment Fe–OC pool (0–1920 µmol g?1) and CBD-extractable Fe (123–4050 µmol g?1), which was not mirrored in the extent of reductive dissolution of Fe (18.9–84.6 µmol g?1) and OC (1080–1700 µmol g?1) during anoxia, suggesting that Fe-bound OC may play a minor role for sediment OC release in boreal lakes. However, studies of redox-related OC cycling in boreal lake sediments should consider that the amount of Fe–OC can be high in some lakes.  相似文献   

5.
In order to study how N, P, Fe, Mn and S concentrations in pore waters change with time at different temperatures, an incubation experiment was carried out with surficial intertidal sediment. To evaluate the importance of benthic microorganisms, an abiotic control was established by poisoning sediment. The live and poisoned sediments were incubated for ten hours at 10, 21, 30 and 40°C. Dissolved Inorganic Nitrogen (DIN), Dissolved Reactive Phosphorus (DRP), NH4 +, total dissolved manganese (Mndiss), total dissolved iron (Fediss) and soluble inorganic sulphide (HS)t were followed in the pore water samples. Results indicated that high temperature influenced nitrification, allowing accumulation of ammonia and that microorganism activity did not seem important for Mn reduction. Anaerobic nitrification by Mn reduction was advanced as an explanation of the behaviour of DIN during the experiment.  相似文献   

6.
After a reduction of the external phosphorus loading to a lake, an internal loading from the sediments may delay the improvement of the water quality. The accepted method to combat internal loading is careful dredging of the upper sediment layers (Cooke et al., 1986), but this method is costly and time consuming. Addition of phosphorus binding agents to the sediments might offer an alternative. In the Netherlands the use of aluminum compounds, the most common phosphorus binding agent, for water quality improvement purposes is not favoured. Therefore a sediment treatment with a solution of iron(III)chloride was tested. Iron was chosen because it is considered to be a natural binder of phosphate. 100 g m–2 of Fe3+ were added to the sediments of the shallow (1.75 m average depth) and eutrophic Lake Groot Vogelenzang (The Netherlands) in October and November 1989. The iron(III)chloride solution was diluted 100 times with lake water and mixed with the surface sediments with a water jet.Following the addition the concentrations of total phosphorus (Fig. 1), chlorophyll-a and suspended solids decreased. This improvement of the water quality lasted for three months. After this time the total phosphorus concentration increased again, but remained at a lower level than in spring and summer of 1989. The phosphorus release rate from the sediments as measured from intact sediment cores decreased from 4 to 1.2 mg P m–2 d–1 (n = 5), and the bioavailability of the sediment phosphorus, as measured with bioassays, decreased from 34 to 23% (n = 5) shortly after the treatment. One year after the treatment the release rate was increased to 3 mg P m–2 d–1 (n = 5). Before treatment, the lake was thought to have a residence time of over one year. However, the chloride added to the lake disappeared according to a dilution rate of 0.03 d–1 or a retention time of about 35 days. A high external loading due to rapid flushing with phosphorus-rich water from surrounding lakes possibly prevented a more durable improvement in water quality. Another possibility is that the iron addition has lost its phosphate binding capacity due to reduction or binding with other anions like carbonate or sulphide. Therefore the suitability of the method to reduce internal loading and especially the long term availability of added iron to bind phosphorus needs additional proof.The treatment of the 18 ha area of Lake Groot Vogelenzang took three weeks. The operational costs were about US$ 125000. This is fast and cheap compared to dredging. Application of the technique is limited to those cases where the sediments are not polluted with micro-pollutants and the water depth need not be increased.  相似文献   

7.
Sulfate control of phosphorus availability in lakes   总被引:9,自引:4,他引:5  
During summer stratification large amounts of phosphorus (P) accumulate in anoxic bottom waters of many lakes due to release of P from underlying sediments. The availability to phytoplankton of this P is inversely related to the Fe:P ratio in bottom waters. Using data from 51 lakes, we tested the hypothesis that sulfate concentration in lake water may be critical in controlling the Fe:P ratio in anoxic bottom waters. Results showed that Fe:P ratios in bottom waters of lakes were significantly (p<0.001) related to surface water sulfate concentrations. The higher Fe:P ratios in low sulfate systems is due not only to higher iron concentrations in anoxic bottom waters but also to lower P concentrations in anoxic waters. Thus, our results suggest that anthropogenically induced increases in sulfate concentrations of waters (e.g. from fossil fuel burning) may have a double effect on P cycling in lakes. Higher sulfate concentrations can both increase the magnitude of P release from sediments as well as increase the availability of P released from sediments into anoxic bottom waters.  相似文献   

8.
Benthic phosphorus regeneration in the Potomac River Estuary   总被引:2,自引:2,他引:0  
Callender  Edward 《Hydrobiologia》1982,91(1):431-446
The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment.In situ benthic fluxes (0.1 to 2.0 mmoles m−2 day−1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m−2 day−1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Bothin situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980.  相似文献   

9.
In the Azores, the advanced trophic state of the lakes requires a fast intervention to achieve the good ecological status prescribed by the Water Framework Directive. Despite the considerable effort made to describe the phytoplankton growing on the water column, the lack of information regarding the microbial processes in sediments is still high. Thus, for the successful implementation of internal management actions, the present work explored the relationships between geochemical profiles and dominant members of the bacterial community in sediments from eutrophic Azorean lakes. Lake Azul geochemical profiles were quite homogeneous for all parameters, while in lake Furnas the total iron profile presented a peak below the aerobic layer. For lake Verde, the concentrations of all studied parameters (20 ± 2% loss-on-ignition; 2.10 ± 0.08 mg g?1 total phosphorus; 1.31 ± 0.50 mg g?1 total nitrogen; 8.06 ± 0.13 mg g?1 total iron) in the uppermost sediment layer were approximately two times higher than the ones in sediments from other lakes, decreasing with sediment depth. The higher amounts of phosphorus and organic matter in lake Verde suggested a higher internal contribution of phosphorus to eutrophication. The dominant members of the sediment bacterial community, investigated by denaturing gradient gel electrophoresis, were mostly affiliated to Proteobacteria phylum (Alpha-, Delta-, and Gamma-subclasses), group Bacteroidetes/Chlorobi and phylum Chloroflexi. The Cyanobacteria phylum was solely detected in sediments from lake Verde and lake Furnas that presented the highest amounts of nitrogen and phosphorus both in the water column and sediments, while the other phyla were detected in sediments from the three studied lakes. In conclusion, management measurers to achieve the good ecological status until 2015 should be distinct for the different lakes taking into account the relative magnitude of the nutrient sources and the bacterial diversity in sediments.  相似文献   

10.
Iron Constraints on Planktonic Primary Production in Oligotrophic Lakes   总被引:3,自引:0,他引:3  
Phototrophic primary production is a fundamental ecosystem process, and it is ultimately constrained by access to limiting nutrients. Whereas most research on nutrient limitation of lacustrine phytoplankton has focused on phosphorus (P) and nitrogen (N) limitation, there is growing evidence that iron (Fe) limitation may be more common than previously acknowledged. Here we show that P was the nutrient that stimulated phytoplankton primary production most strongly in seven out of nine bioassay experiments with natural lake water from oligotrophic clearwater lakes. However, Fe put constraints on phytoplankton production in eight lakes. In one of these lakes, Fe was the nutrient that stimulated primary production most, and concurrent P and Fe limitation was observed in seven lakes. The effect of Fe addition increased with decreasing lake water concentrations of total phosphorus and dissolved organic matter. Possible mechanisms are low import rates and low bioavailability of Fe in the absence of organic chelators. The experimental results were used to predict the relative strength of Fe, N, and P limitation in 659 oligotrophic clearwater lakes (with total phosphorus ≤ 0.2 μM P and total organic carbon < 6 mg C l−1) from a national lake survey. Fe was predicted to have a positive effect in 88% of these lakes, and to be the nutrient with the strongest effect in 30% of the lakes. In conclusion, Fe, along with P and N, is an important factor constraining primary production in oligotrophic clearwater lakes, which is a common lake-type throughout the northern biomes. This paper is dedicated to the memory of Prof. Peter Blomqvist (deceased 2004).  相似文献   

11.
The Salton Sea is a hypereutrophic, saline lake in the desert of southern California. Like many lakes, the primary productivity of the Sea is limited by phosphorus. However, unlike most lakes, the release of P from the sediments is not controlled by the reductive dissolution of Fe(III)-oxide minerals. Most of the iron in the sediments of the Salton Sea is present as Fe(II)-sulfides and silicates. Rather, the sediments are dominated by calcite which is actively precipitating due to alkalinity production via sulfate reduction reactions. We hypothesized that calcite could be an important sink for phosphorus released from the decomposing organic matter. In this work we evaluated the potential for phosphate to coprecipitate with calcite formed in simulated Salton Sea sediment pore water. At calcite precipitation levels and P concentrations typical for the Salton Sea pore water, coprecipitation of P removed 82–100% of the dissolved phosphorus. The amount of P incorporated into the calcite was independent of temperature. The results of this work indicate that the internal loading of P within the Salton Sea is being controlled by calcite precipitation. Management of external P loading should have an immediate impact on reducing algae blooms in the Salton Sea. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife, and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

12.
This research aims to analyse the sediment capacity to buffer free sulphide release in three coastal lagoons which differ in terms of eutrophication level, tide influence and primary producer communities. A preliminary estimate of soluble reactive phosphorus (SRP) regeneration coupled with sulphide fluxes is also made. Sediment profiles of ferrous and ferric iron and reduced sulphur pools were determined in three stations in the Bassin d'Arcachon (South West France), in one site in the Etang du Prévost lagoon (Southern France), and in three stations in the Sacca di Goro lagoon (Northern Italy). Laboratory experiments were also conducted by incubating sediment slurries. Slurries from the French lagoons were also enriched with about 2% d.w. of organic detritus obtained from the dominant macrophytes of each site, namely Zostera noltii and Ruppia cirrhosa (Bassin d'Arcachon), and Ulva rigida (Etang du Prévost). In the Sacca di Goro, slurry experiments were conducted at two sites with different salinity range, sediment composition and hydrodynamics.Field data showed that concentrations of available iron (Fe(II)+Fe(III)) ranged from a minimum of 28.5 µmol cm–3 (Etang du Prévost) to a maximum of 275.7 µmol cm–3 (Sacca di Goro). Moreover, in the French lagoons, acid volatile sulphide (AVS) accumulation in the superficial sediment was related to ferrous iron concentrations. Laboratory experiments showed that in spite of strong reducing conditions, sulphide and SRP release was weaker in iron-rich sediments and in those enriched with the most refractory organic matter. The highest fluxes were detected in sediment slurries from the Etang du Prévost, which had the lowest iron content, supplied by 2% of the labile detritus from Ulva rigida. In this case, SRP release was directly related to sulphide production.Two factors seem significant to evaluate the buffer capacity against free sulphide and SRP release from anoxic sediment: organic matter biodegradability, which forces sediment toward reducing conditions, and iron availability, which can affect sulphide mobility as well as the iron hydroxide-phosphate-sulphide system.  相似文献   

13.
Peak pore water SRP and iron(II) concentrations were found during summer in surface sediments in the shallow and eutrophic L. Finjasjön, Sweden, and the concentrations generally increased with water depth. The SRP variation in surface sediments (0–2 cm) was correlated with temperature (R2 = 0.82–0.95) and iron(II) showed a correlation with sedimentary carbon on all sites (R2 = 0.42–0.96). In addition, sedimentary Chla, bacterial abundances and production rates in surface sediments (0–2 cm) varied seasonally, with peaks during spring and fall sedimentation. Bacterial production rates were correlated with phosphorus and carbon in the sediment (R2 = 0.90–0.95 and R2 = 0.31–0.95, respectively), indicating a coupling with algal sedimentation. A general increase in sediment Chla and bacterial abundances towards sediments at greater water depth was found. Further, data from 1988–90 reveal that TP and TFe concentrations in the lake were significantly correlated during summer (R2 = 0.81 and 0.76, in the hypolimnion and epilimnion, respectively). The results indicate that the increase in pore water SRP and Fe(II) in surface sediments during summer is regulated by bacterial activity and the input of organic matter. In addition, spatial and temporal variations in pore water composition are mainly influenced by temperature and water depth and the significant correlation between TP and TFe in the water suggests a coupled release from the sediment. These findings support the theory of anoxic microlayer formation at the sediment-water interface.  相似文献   

14.
Studies of phosphorus (P) dynamics in surface sediments of lakes and coastal seas typically emphasize the role of coupled iron (Fe), sulfur (S) and P cycling for sediment P burial and release. Here, we show that anaerobic oxidation of methane (AOM) also may impact sediment P cycling in such systems. Using porewater and sediment profiles for sites in an oligotrophic coastal basin (Bothnian Sea), we provide evidence for the formation of Fe-bound P (possibly vivianite; Fe3(PO4)2 .8H2O) below the zone of AOM with sulfate. Here, dissolved Fe2+ released from oxides is no longer scavenged by sulfide and high concentrations of both dissolved Fe2+ (>1 mM) and PO4 in the porewater allow supersaturation with respect to vivianite to be reached. Besides formation of Fe(II)-P, preservation of Fe-oxide bound P likely also contributes to permanent burial of P in Bothnian Sea sediments. Preliminary budget calculations suggest that the burial of Fe-bound P allows these sediments to act as a major sink for P from the adjacent eutrophic Baltic Proper.  相似文献   

15.
Sedimentary losses of phosphorus in some natural and artificial Iowa lakes   总被引:2,自引:2,他引:0  
Phosphorus sedimentation in four natural and four artificial Iowa lakes was measured by using sediment traps to determine if sedimentary phosphorus losses were greater in artificial lakes than in natural lakes and the limnological factors influencing phosphorus loss rates. Mean phosphorus sedimentation rates ranged from 13.3 to 218 mg · m–2 day–1. Although phosphorus sedimentation rates for the natural lakes as a group did not differ significantly from the rates for artificial lakes, there were significant differences among individual lakes. Phosphorus sedimentation rates also varied significantly during different seasons at different locations within a lake and at different depths within a location. Despite the variance, phosphorus sedimentation rates were strongly correlated with inorganic sediment concentrations and inorganic matter sedimentation rates, thus suggesting that inorganic sediments influence phosphorus sedimentation rates. When Iowa data were combined with data from published studies, mean sedimentation rates were directly correlated with mean chlorophyll a concentrations of the lakes. These data strongly suggest that sedimentation rates as measured by sediment traps are strongly influenced by the trophic status of a lake. Though sedimentation rates were higher in the more productive lakes, it is suggested that these rates represent only gross sedimentation rates rather than net sedimentation rates because of resuspension and resedimentation of bottom sediments.  相似文献   

16.
Spatial variation of phosphorus fractions in bottom sediment, pore water and overlying water in three shallow eutrophic lakes, Nishiura, Kitaura and Sotonasakaura, Japan, and the contributions of the fractional P to mobilization of phosphorus from sediment were examined in this study. The vertical distributions of dissolved inorganic phosphorus (DIP) concentrations in overlying and pore water differed with lake and sampling site. In particular, DIP was high in pore water in the surface layer of the sediment for the middle to downlake areas of Lake Kitaura. DIP release flux calculated from a gradient of the concentrations at the sediment–water interface was high compared with other sites. The distribution of fractional P content in sediments was highly variable. The citrate–dithionite–bicarbonate–non-reactive phosphorus (CDB–NRP) fraction, in particular, differed greatly among the three lakes. According to correlation in the ratios between CDB–NRP and loss on ignition, sediments of these lakes were classified in three clusters. The CDB–NRP fraction was suggested to play a role in DIP release from sediment. The possibility of nitrate concentration playing a role in the control of DIP release was considered.  相似文献   

17.
Phosphorus (P) is a key indicator of the aquatic organism growth and eutrophication in lakes. The distribution and speciation of P and its release characteristics from sediments were investigated by analyzing sediment and water samples collected during high flow and low flow periods. Results showed that the average concentrations (ranges) of total phosphorus (TP) in the surface and deep water were 0.06 mg L-1 (0.03–0.13 mg L-1) and 0.15 mg L-1 (0.06–0.33 mg L-1), respectively, while the average concentration (range) of TP in sediments was 709.17 mg kg-1 (544.76–932.11 mg kg-1). The concentrations of TP and different forms of P varied spatially in the surface sediments, displaying a decreasing trend from south to north. P also varied topographically from estuarine areas to lake areas. The vertical distribution of TP and different forms of P were observed to decrease as depth increased. The P concentrations during the low flow period were higher than those during the high flow period. Inorganic phosphorus (IP) was the dominant form of P, accounting for 61%–82% of TP. The concentration of bioavailable phosphorus in sediments was relatively large, indicating a high risk of release to overlying water. The simulation experiment of P release from sediments showed that the release was relatively fast in the first 0-5 min and then decreased to a plateau after 1 hr. Approximately 84–89% of the maximum amount of P was released during the first hour.  相似文献   

18.
Available phosphorus in lake sediments in The Netherlands   总被引:4,自引:3,他引:1  
Klapwijk  S. P.  Kroon  J. M. W.  Meijer  M -L. 《Hydrobiologia》1982,91(1):491-500
The amount of phosphorus available to algae in the sediments of four lakes in the western part of the Netherlands has been assessed by means of chemical extraction and bioassay techniques. In addition to direct chemical sediment analyses, extractions were carried out with an NTA column method and a stepwise NH4 Cl-NaOH-HCI shaking method, the latter supposedly separating the weakly bound, the Fe- and Al-bound and the Ca-bound phosphates in the sediments. Bioassays, with sediment as the sole source of P, were made withScenedesmus quadricauda in modified Skulberg's 28 medium to determine the amount of phosphates available to algae.The average total P concentration of the sediments varied from 0.8 to 3.6 mg P g–1 dry wt and correlated well with the net external P loading of the lakes. Uptake of P by algae in the bioassays varied from 0.4 to 36% — while NTA extracted 36–69% of the total P. The ratio NH4Cl extracted/ NaOH extracted/ HCI extracted phosphates is different from lake to lake, although in all lakes the highest extractions (27–62% of total P) are found in the NaOH fraction. However, in the peaty sediments of these lakes, the NaOH step extracted not only the Fe- and Al-bound phosphates but, also, large amounts of humus compounds. Hence, this fraction also contains non-available organic P.The results are related to soil type and chemical characteristics of the sediments, and compared with data from other authors. A positive correlation was found between phosphate available to algae and NTA- and NaOH-extractable P, but the correlation with total phosphorus was higher. Moreover, algal-extractable P proved to be positively correlated with total iron and clay content and negatively with the amount of organic matter.It is concluded that the sediments in the investigated lakes show great variability and that the chemical extraction techniques cannot replace the bioassays to assess the amount of phosphorus available to algae.  相似文献   

19.
Release of phosphorus from sediments in Lake Biwa   总被引:16,自引:0,他引:16  
Two sulfur-mediated reactions are resulting in the eutrophication of Lake Biwa, Japan. The iron (II) phosphate mineral vivianite is dissolving in sulfide-enriched sediments that in places results in porewater concentrations of phosphate exceeding 3 mg l−1. The dissolution of phosphate is evident in profiles of total phosphorus where zones of dissolution and a zone of precipitation in the most oxic surface sediments are visible. At times sulfate reduction in these surface sediments results in pH values as high as 9.9, which can dissolve phosphate adsorbed to iron (III). This release of phosphorus from sediments is at least partially responsible for the recent appearance of blue-green algal blooms. Received: August 4, 2000 / Accepted: March 19, 2001  相似文献   

20.
Zeekoevlei is the largest freshwater lake in South Africa and has been suffering from hyper-eutrophic conditions since last few decades. We have used total P (TP), dissolved phosphate (PO4 3−), organic P (OP), calcium (Ca) and iron (Fe) bound P fractions to investigate the relevant physical, chemical and biological processes responsible for sedimentation and retention of P and to study phosphorus (P) dynamics in this shallow lake. In addition, redox proxies (V/Cr and Th/U ratios) are used to study the prevailing redox conditions in sediments. Adsorption by CaCO3 and planktonic assimilation of P are found to control P sedimentation in Zeekoevlei. Low concentration of the labile OP fraction in surface sediments restricts the release of P by bacterial remineralisation. Low molar Ca/P and Fe/P ratios indicate low P retention capacity of sediments, and P is most likely released by desorption from wind-induced resuspended sediments and mixing of pore water with the overlying water column. Handling editor: J. Saros  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号