首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
岱海表层沉积物中内源磷的释放   总被引:7,自引:0,他引:7  
以北方半干旱地区典型内陆封闭湖泊岱海为研究对象,开展了上覆水质及多种环境因子(温度,pH,溶解氧,扰动,光照)对湖泊沉积物内源磷释放的影响研究。结果表明:(1)温度升高有利于内源磷的释放,湖泊水体在温度较高的夏季更易呈现富营养化状态;(2)碱性条件有利于磷的释放,岱海水体属微碱性环境(pH8.8),若水体pH进一步升高,将会造成沉积物内源磷的大量释放;(3)厌氧条件(ρDO0.8mg/L)有利于磷的释放,岱海湖心区水深较深,易形成厌氧环境,因此湖心区内源磷释放强度较浅水区大;(4)强烈扰动有利于磷的释放,这会对浅水区的底质产生较大影响;(5)照度通过底栖藻类的生物作用,间接地限制了沉积物释磷对上覆水中磷浓度的影响。  相似文献   

2.
为探讨贵州省百花湖(水库)消落带土壤磷的释放状况,采用实验室模拟法研究了不同消落带土壤和环境条件变化对百花湖消落带土壤磷释放的影响,分析磷的释放量与磷赋存形态的关系。结果表明:未淹的黄壤释磷量最大,砂石壤最低;温度升高,土壤中磷的释放强度随之增大;扰动上覆水比静置条件下更有利于磷的释放;酸性和碱性条件下土壤磷的释放量略高于中性条件,且碱性条件下最高;厌氧条件比好氧条件更能加速磷释放;不同形态磷与土壤磷释放量有不同程度相关,其中有机磷(OP)与磷的释放极显著相关;与铁铝结合态磷(Fe/Al-P)和钙结合态磷(Ca-P)显著性相关。  相似文献   

3.
为了揭示池塘内循环流水养殖模式(Inner-circulation Pond Aquaculture, IPA)上覆水-沉积物-间隙水不同磷形态时空分布特征, 探讨沉积物-水界面磷的释放通量及其主要影响因素, 在IPA一条水槽前后端设置6个采样点, 共设置4条, 同时对常规传统池塘(Usual Pond Aquaculture, UPA)设置5个采样点, 采用SMT(磷形态标准测试程序)法测量沉积物中磷的形态组成, 对上覆水-沉积物-间隙水磷时空分布特征进行了分析, 统计了磷释放通量及主要影响环境因子的关系。结果表明: (1)从整体上, IPA上覆水及间隙水中不同形态磷含量低于UPA, 且IPA水体磷空间分布差异较大, 水槽后端沉积物向上覆水释放, 水槽前端则表现为上覆水向沉积物汇集; (2)在养殖中后期, 空间上, IPA水槽后端沉积物不同磷形态随着距离增加逐渐降低, 且均低于UPA; 时间上, 2种模式TP、IP、OP和Fe/Al-P随着养殖的进行而显著增加, Ca-P呈先降低后增加的趋势; (3)UPA基本表现为沉积物对磷的吸收, 而IPA磷释放通量时空差异较大, 养殖初期, 水槽前端表现对磷的吸收, 水槽后端10 m内则少量释放; 至养殖中后期, 槽后端10 m内表现对磷的大量释放; 而后端20和30 m在养殖初期磷通量较小, 至养殖中期均转变为对磷的吸收, 至养殖末期则转变为对磷的释放; (4)2种模式磷通量和环境因子的关系基本一致, TP、IP释放通量和pH呈显著正相关, 各形态磷释放通量和沉积物Eh呈显著负相关, 其中温度的升高对各沉积物不同形态磷的释放有显著的促进作用。综上所述, IPA沉积物磷组分时空差异较大, 主要集中分布在水槽后端10 m内, 且在养殖中后期向上覆水大量集中释放。研究旨在为IPA改进固体颗粒物拦截方法、提高残饵和粪便的收集效率及养殖水环境调控提供理论依据。  相似文献   

4.
太湖春季沉积物间隙水中磷的分布特征及界面释放的影响   总被引:7,自引:0,他引:7  
通过对太湖春季不同湖区水体和沉积物间隙水中磷的分布特征研究,探讨了间隙水中磷的释放对上覆水环境的影响。结果表明,颗粒态磷(PP)和溶解态有机磷(DOP)是太湖水体中主要的磷形态,占总磷的58%~95%。不同湖区沉积物间隙水磷的剖面变化可能与生态特征及水动力引起的沉积物-水界面的扰动强度密切相关。湖心和西部沿岸沉积物扰动强烈,致使间隙水中磷含量向上逐渐降底,而梅梁湾和贡湖间隙水磷的垂向变化不大。东太湖和竺山湖沉积物界面间隙水中磷含量偏高,可能是由于表层沉积物的有氧环境使Fe2+被氧化固定下来,并促进了总磷(TP)和溶解态活性磷(DRP)的扩散释放。总体而言,间隙水中各形态磷具有向上覆水体释放的趋势,其中DRP的扩散潜力最大,竺山湖沉积物-水界面DRP扩散通量高达11.42mg.m-2.d-1,表明春季浮游植物的复苏生长对DRP的迫切需求。  相似文献   

5.
泉州湾洛阳江河口沉积物中磷的形态分布   总被引:2,自引:0,他引:2  
分析了泉州湾洛阳江河口沉积物中总磷及5种形态磷(可交换态磷(DP)、铁铝结合态磷(Fe/Al-P)、钙结合态磷(Ca-P)、有机磷(OP)和闭蓄态磷(Re-P))的含量,探讨了它们的垂向分布特征、相互关系及环境指示意义。结果表明:沉积物中的总磷(TP)以无机磷为主,占TP比例76%~89%;除可交换态磷外,沉积物中形态磷的垂向分布规律具有相似性,大体随深度增加而减小,且在表层有富集现象,反映了沉积物中总磷和各形态磷的分布受人类活动影响较明显;通过相关性分析,钙结合态磷是总磷和无机磷的主要控制因素,而总磷和其他形态磷(除了可交换态磷外)相互间均具有显著相关性,且有机质对各形态磷的分布均有一定影响;TP和各形态磷含量,以及(Fe/Al-P)/TP、Ca-P/TP、OP/TP都在同一层出现了显著变化,反映了水利设施和围垦工程对沉积环境和各形态磷迁移转化有较大影响。  相似文献   

6.
小型浅水湖泊沉积物磷的赋存形态及其相关性分析   总被引:1,自引:0,他引:1  
以孔目湖沉积物为研究对象, 应用七步连续提取法测定其中的不同形态磷, 探讨了该湖泊沉积物中各赋存形态磷的分布特征, 并对其进行了相关性分析。结果表明: 该湖泊遭受的磷内源负荷比较大, 磷污染严重; 沉积物中TP含量在2338.63-2954.98 mg•kg-1, 平均为2671.37 mg•kg-1; 沉积物中各形态磷含量从高到低依次为: Fe-P>De-P>Ca-P> OP>Al-P>Oc-P>Ex-P, 分别占TP的53.9%、28.7%、8.8%、6.2%、1.2%、0.9%、0.3%; 生物有效磷含量为1583.59 mg•kg-1, 占TP的59.28%; 沉积物中TP与Fe-P极显著相关, Oc-P与Ca-P和OP与Ca-P均相关, 而TP与Ex-P、Al-P、Ca-P和OP相关性较差, 说明沉积物中TP含量主要来自于Fe-P。这一研究结果为揭示小型湖泊富营养化发生机制提供了数据及理论支撑。  相似文献   

7.
不同固磷方式对巢湖沉积物磷吸附行为的影响   总被引:3,自引:0,他引:3  
内源磷负荷将严重阻碍富营养化湖泊的恢复,其控制技术的关键在于有效增强沉积物吸附磷的能力,而相关研究相对较少。研究以典型富营养化湖泊(巢湖)严重污染区域的沉积物为实验对象,系统比较了常规固磷方式(施用CaCl2、FeCl3、AlCl3与曝气)对沉积物磷吸附行为和间隙水溶解态可反应磷(SRP)浓度的影响。结果表明:施用不同剂量的CaCl2之后,沉积物磷最大吸附量和吸附能均无显著变化,间隙水SRP浓度和沉积物磷平衡浓度(EPC0)仅有较小幅度的下降;FeCl3和AlCl3的施用可明显增加沉积物磷的最大吸附量和吸附能,同时有效降低间隙水SRP浓度和EPC0值,即沉积物显示更强的从水中吸附磷的能力。当同处低剂量水平时,铁能更有效地降低沉积物EPC0值;反之,曝气对沉积物最大吸附量和吸附能均无显著影响,却明显提高了间隙水SRP浓度和沉积物EPC0值,进而导致更强的磷释放风险。故建议将适量铁的施用作为富营养化湖泊沉积物修复的有效技术,且慎用曝气处理。  相似文献   

8.
利用柱状沉积物采样器和Peeper间隙水采集器,分别于夏冬两季获取山东省南四湖不同湖区原位柱状沉积物和间隙水,分析沉积物磷形态和间隙水磷分布特征,探讨沉积物和间隙水磷之间的相关性.结果表明:南四湖沉积物含有较丰富的磷,空间差异性显著,总体呈北高南低的趋势.这与南四湖北部距离济宁市区较近、受污染较重有关.各磷形态组分中以无机磷(IP)含量最高,夏冬两季IP含量分别占总磷(TP)的52.3%~87.2%和60.6%~88.3%.4个湖区表层沉积物TP含量(5 cm内)均呈现夏季>冬季的特征,可能与夏季水产品养殖旺盛、湖区周围耕地大量施用化肥,以及旅游活动频繁等有关.间隙水磷(PO43--P)浓度夏冬两季在垂直方向上均呈先增加后降低的趋势,夏季含量明显高于冬季,说明沉积物中的磷在夏季具有更大的向上覆水释放的潜力.夏季沉积物有机磷(OP)和IP相关性显著,冬季相关性不显著,说明夏季IP与OP间的形态转化较冬季活跃.沉积物铁铝结合态磷(Fe/A1-P)和IP与间隙水磷含量具有显著正相关关系.夏冬两季Peeper法获取间隙水磷的平均含量比传统离心法高出20% ~50%,前者可能更精确.  相似文献   

9.
王立志  董彬  宋红丽  李宝  安娟 《生态科学》2020,39(3):160-171
为利用冷暖种交替控制水体磷污染、抑制水体富营养化,揭示湖泊演化规律和机理。研究设置单季植物组(黑藻组、菹草组)和交替生长组(黑藻组+菹草组)进行实验。交替生长组在黑藻衰亡期种植菹草,监测各组上覆水和底泥中各形态磷含量的变化,计算黑藻衰亡释放磷及菹草生长吸收磷的总量,同时测定环境因子指标。分析沉水植物交替生长(黑藻+菹草)过程对衰亡期沉水植物(黑藻组)释放磷所带来的二次污染的消减作用,并分析环境因子变化与磷含量之间的关系。实验结果表明:黑藻+菹草组显著(P<0.05)降低了上覆水中总磷(TP)、溶解性总磷(DTP)和溶解性活性磷(SRP)的浓度;显著(P<0.05)降低了间隙水中DTP和SRP的浓度。底泥TP含量黑藻组呈上升趋势,黑藻+菹草和菹草组呈下降趋势。在采用菹草生物量期望2倍于衰亡植物黑藻生物量的模拟实验条件下,每实验组沉水植物黑藻衰亡分解所释放的磷为1.51 g,沉水植物菹草生长所富集吸收的磷为1.83 g。因此,菹草具备消减黑藻所释放磷的能力,可作为冷暖种交替控制水体富营养化的备选物种。实验组磷的迁移方向分别为:黑藻组磷迁移最终方向为底泥,黑藻+菹草组和菹草组磷的迁移方向为植物。黑藻+菹草组通过提高环境中DO和ORP,使得水相中磷向沉积物相中迁移,从而使得水相中各形态磷浓度保持在相对较低的水平。  相似文献   

10.
三峡水库香溪河库湾沉积物对磷的吸附特征研究   总被引:5,自引:1,他引:4  
通过三峡水库香溪河库湾的3个采样点沉积物中磷的自然吸附实验和不同粒径下沉积物的胁迫吸附试验,研究了沉积物对磷的吸附特征。结果表明:上覆水中的磷浓度与沉积物中的总磷含量有很好的相关性,沉积物中的总磷含量对上覆水的水质有很大的影响;三点的临界平衡浓度为C1:0.188mg/L,C2:0.147mg/L,C3:0.188mg/L;各点增加的量即饱和吸附量不同(ΔQ1:268.16mg/kg,ΔQ2:57.96mg/kg,ΔQ3:267.27mg/kg),恰恰与三点的临界平衡浓度之间的关系一致;粒径对沉积物对磷的吸附量影响程度与沉积物理化参数也存在很大的关系;三个样点的吸附量,分别接近于1.5mg/g,0.8mg/g及1.4mg/g。结果还表明:最大吸附量大的地方,饱和吸附量不一定就大,二者之间不存在必然的关系;香溪河沉积物中的磷在现有条件下表现为“源”,不排除外在条件改变时转化为“汇”。如果最大吸附容量、饱和吸附容量及平衡浓度能够很好的与数学相结合,可为当地的环保部门管理香溪附近工厂提供科学依据。  相似文献   

11.
Columnar sediment samples were collected from five representative river inflow areas of Dianchi Lake, China. The vertical distribution of each form of P were tested. Results showed that the concentration of TP in the sediments from areas A, B, C, D and E in the order of D > B > A > C > E, and the average concentration of D, B, A, C and E were 2991, 2064, 1308, 879, and 759 mg?kg?1, respectively. The concentration of Ex-P, Fe/Al-P, Ca-P and Org-P all decreased with increasing depth. The release of Ex-P was significantly related to TP whereas the Fe/Al-P was not significantly related to TP in the samples from areas polluted by domestic sewage. However, the release of Ex-P and Fe/Al-P were both significantly related to TP in the samples from areas polluted by phosphate mining and phosphate fertilizer application. The results of equilibrium P concentration (EPC0) analysis showed that P in the sediments of areas A, D and E were the source of P in Dianchi Lake, and the P in the sediments of areas B and C were in relative equilibrium with the overlying water.  相似文献   

12.
To investigate the effective depth from the surface sediment, and phosphorus fractions related to phosphorus release under short-term anoxic conditions, varying lengths of sediment cores taken from Lake Kasumigaura, a large shallow polymictic lake in Japan, were incubated for a few weeks and then analyzed. Results showed few differences in total phosphorus (TP) amount per unit area in overlying waters irrespective of the core thickness, and sums of TP in both overlying water and 0- to 2-cm sediment layers were nearly equal before and after the experiment, indicating that phosphorus was released mainly from the 0- to 2-cm layer by dissolution. In contrast, phosphorus was decreased in pore water below a 2-cm depth, probably through sorption to sediment solids. The citrate-dithionite-bicarbonate total phosphorus (CBD-TP) and non-reactive phosphorus extracted by NaOH (NaOH-NRP) in sediment solids in the 0- to 2-cm layer decreased during the experiment. The decreases of CBD-TP were 10 times higher than those of NaOH-NRP, suggesting that the released phosphorus came mainly from the fraction bound to iron in Lake Kasumigaura.  相似文献   

13.
Different phosphorus fractions and metal element composition of surficial sediments were measured on three occasions in 2005 and 2006 along a transect between Nyanza Gulf and offshore Lake Victoria, in order to assess the potential for sediments to contribute to the water column P concentrations in Lake Victoria. Total phosphorus (TP), apatite phosphorus (AP), inorganic phosphorus (IP) and organic phosphorus (OP) increased in sediments along the gulf towards the main lake while the non-apatite inorganic phosphorus (NAIP) increases were less defined. The longitudinal gradient of sediment TP and its fractions in Nyanza Gulf is a result of high rates of terrigenous input and resuspension and transport of the light, phosphorus rich inorganic and organic matter towards the main lake. TP in the sediment ranged from 812.7 to 1,738 mg/kg dry weight (DW) and was highest in the Rusinga Channel, the exchange zone between the gulf and the main lake. AP was the most important TP fraction, contributing between 35 and 57.3% of TP. Ca content in the sediment was strongly associated with TP and AP in the sediment (r2 = 0.92 and 0.98, respectively) in the gulf and the channel, indicating the importance of apatite in controlling P availability in these zones. In the gulf and the Rusinga Channel, the less bioavailable apatite phosphorus dominated, whereas in the deeper main lake OP was the major fraction illustrating the importance of anaerobic release of P from sediments and acceleration of internal P loading in the main lake.  相似文献   

14.
Phosphorus speciation in Myall Lake sediment, NSW, Australia   总被引:1,自引:0,他引:1  
The amount of phosphorus and its fractions in the sediment of Lake Myall, NSW, Australia, was assessed using a sequential extraction technique. Five sedimentary phosphorus reservoirs were measured, namely loosely sorbed phosphorus (NH4Cl–P), iron associated phosphorus (BD–P), calcium bound phosphorus (HCl–P), metal oxide bound phosphorus (NaOH–P) and residual phosphorus (organic and refractory P, Res-P). Samples were taken from the deep and shallow sites of the lake. During the analysis, the average concentrations of each fraction of phosphorus was calculated. The results depicted that the total phosphorus (TP) content and chemically extractable phosphorus in both fine and coarse sediment fractions from the deep sites of the lake were significantly higher than those of the shallow sites, except for HCl–P extracted from the fine sediment fraction. Sediment TP was also strongly and positively correlated to sediment Fe. The phosphorus in the sediment mainly consisted of BD–P and Res-P, while NH4Cl–P and HCl–P only contributed a minor part. The rank order of the different phosphorus extracts was similar for the two sites, namely Residual-P > BD–P > NaOH–P > HCl–P > NH4Cl–P.  相似文献   

15.
Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003–2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)~P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87–95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)~P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)~P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication.  相似文献   

16.
Klamt  Anna-Marie  Hilt  Sabine  Moros  Matthias  Arz  Helge W.  Hupfer  Michael 《Biogeochemistry》2019,143(3):371-385

In shallow lakes, increasing phosphorus (P) loading has often been accompanied by a shift from a clear-water, macrophyte-dominated state to a turbid state featuring phytoplankton dominance. The effect of a regime shift on P burial and P fractions in lake sediments, however, is poorly understood. We used sediment cores from a eutrophic hard-water lake (Lake Gollinsee, Germany) that had undergone a regime shift (in approximately 1917) to investigate the effect on the accumulation rate of P and on changes in P forms. The cores were dated using Hg contents and radioisotopes (210Pb, 137Cs, and 241Am). A combination of total organic carbon to total nitrogen ratios (TOC:TN), δ13TOC values, X-ray fluorescence calcium (Ca) counts, and sediment colour clearly distinguished sediment layers that were deposited during periods of macrophyte or phytoplankton dominance. The accumulation rate of total P (TP) in the sediments was 1.8 times higher after the regime shift and was associated with changes in the distribution of P fractions. The proportions of loosely-(NH4Cl-extracted TP) and Ca-(HCl-extracted TP) bound P decreased significantly, whilst the proportions of biogenic P (NaOH-extracted NRP) and aluminium-bound P (NaOH-extracted SRP) increased significantly. A higher dry mass deposition rate, reduced burial of stable Ca-P complexes, and increased contents and proportions of the mobile iron-bound (BD-extracted TP) and biogenic P fractions in the near-surface sediment layers are assumed to have enhanced the internal cycling of P and hence to have helped to maintain a state of phytoplankton dominance.

  相似文献   

17.
L. Gao  Q. Wei  F. Fu 《Plant biosystems》2013,147(4):1175-1183
Macroalgal blooms have occurred worldwide frequently in coastal areas in recent decades, which dramatically modify phosphorus (P) cycle in water column and the sediments. Rongcheng Swan Lake Wetland, a coastal wetland in China, is suffering from extensive macroalgal blooms. In order to verify the influence of macroalgal growth on sediment P release, the sediments and filamentous Chaetomorpha spp. were incubated in the laboratory to investigate the changes of water quality parameters, P levels in overlying water, and sediments during the growth period. In addition, algal biomass and tissue P concentration were determined. In general, Chaetomorpha biomasses were much higher in high P treatments than in low P treatments. Compared with algae+low P water treatment, the addition of sediments increased the algal growth rate and P accumulation amount. During the algal growth, water pH increased greatly, which showed significant correlation with algal biomass in treatments with high P (P < 0.05). P fractions in the sediments showed that Fe/Al–P and organic P concentrations declined during the algal growth, and great changes were observed in algae+low P water+sediment treatment for both. As a whole, the sediments can supply P for Chaetomorpha growth when water P level was low, and the probable mechanism was the release of Fe/Al–P at high pH condition induced by intensive Chaetomorpha blooms.  相似文献   

18.
Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (< 20 degrees C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号