首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We examined whether the incorporation of a second amino group into the 1-aminoethyl pharmacophore of rimantadine 2 and into the piperidine pharmacophore of the heterocyclic rimantadine 4 was compatible with anti-influenza virus A activity. The new synthetic molecules are capable of forming two hydrogen bonds within the receptor. We identified molecules 8 and 16, bearing the adamantyl and 1,2-diaminoethyl groups, which are equipotent to rimantadine 2 bearing the adamantyl and 1-aminoethyl pharmacophore groups. Interestingly, diamino compound 16 is a 4-fold more potent inhibitor than its parent monoamino heterocyclic rimantadine 4 propably because of additional hydrogen bonding interactions with the M2 protein receptor.  相似文献   

2.
3.
Four 2,4-disubstituted quinazoline series containing various amide moieties were designed and synthesized as new anti-influenza A virus agents using the strategies of bio-isosterism and scaffold hopping. Many of them exhibit potent in vitro anti-influenza A virus activity and low cytotoxicity (CC50: >100 μM). Particularly, compounds 10a5 and 17a show better activity (IC50: 3.70–4.19 μM) and higher selective index (SI: >27.03, >23.87, respectively) against influenza A/WSN/33 virus (H1N1), opening a new direction for quinazoline derivatives in anti-influenza A virus field.  相似文献   

4.
In order to obtain new, cluster-forming antibiotic compounds, teicoplanin pseudoaglycone derivatives containing two lipophilic n-octyl chains have been synthesized. The compounds proved to be poor antibacterials, but, surprisingly, they exhibited potent anti-influenza virus activity against influenza A strains. This antiviral action was related to inhibition of the binding interaction between the virus and the host cell. Related analogs bearing methyl substituents in lieu of the octyl chains, displayed no anti-influenza virus activity. Hence, an interaction between the active, dually n-octylated compounds and the lipid bilayer of the host cell can be postulated, to explain the observed inhibition of influenza virus attachment.  相似文献   

5.
【目的】将TAP标签构建到WSN病毒基因组上,得到含有TAP标签的重组流感病毒,以便进行后续的病毒追踪。【方法】利用反向遗传学技术,对甲型流感病毒A/WSN/33(H1N1)的PA片段进行改造来插入TAP(tandemaffinitypurification)标签序列。通过病毒拯救得到表达外源标签TAP的重组流感病毒WSNPA-TAP,并对拯救出的重组病毒进行生物学鉴定。【结果】成功拯救出重组流感病毒并命名为WSN PA-TAP。重组病毒基因组测序表明重组病毒的序列正确,利用RNA银染技术观察到重组病毒的全基因组片段。重组流感病毒WSN PA-TAP在MDCK细胞上测定生长曲线,发现该重组病毒的复制能力比野生型WSN弱;Westernblotting检测到PA-TAP融合蛋白的表达,其分子质量为96 kDa。【结论】成功拯救出能够表达外源标签TAP的重组流感病毒WSN PA-TAP,为筛选与甲型流感病毒聚合酶有关的宿主蛋白的研究提供了新思路,同时也为以甲型流感病毒为载体携带外源基因的探索提供了重要依据。  相似文献   

6.
The threat of pandemic influenza is a significant concern of governments worldwide. There is a very limited and relatively expensive armament to tackle such a pandemic should it occur. This fact provides much impetus to the scientific community for the discovery of new and less expensive anti-influenza drugs. Our longstanding interest in the inhibition of influenza virus sialidase, coupled with the development of simple carbohydrates that mimic an unsaturated derivative of the enzyme's naturally-occurring ligand, N-acetylneuraminic acid, has led us to investigate the development of influenza virus sialidase inhibitors based on these mimetics. We have successfully prepared a range of these compounds, in good yield, from the relatively inexpensive carbohydrate N-acetylglucosamine utilising a short synthetic procedure. We have employed a sialidase inhibition assay for biological evaluation of the target compounds and to our delight these mimetics have displayed significant inhibition of influenza virus sialidase.  相似文献   

7.
The coronavirus spike protein S is responsible for important biological activities including virus neutralization by antibody, cell attachment, and cell fusion. Recently, we have elucidated the amino acid sequence of an S determinant common in murine coronaviruses (W. Luytjes, D. Geerts, W. Posthumus, R. Meloen, and W. Spaan, J. Virol. 63:1408-1412, 1989). A monoclonal antibody directed to this determinant (MAb 5B19.2) protected mice against acute fatal infection. In this study, BALB/c mice were immunized with a synthetic peptide of 13 amino acids corresponding to the binding site of MAb 5B19.2, which was either extended with an amino acid sequence of influenza virus hemagglutinin or conjugated to keyhole limpet hemocyanin. Both immunogens induced S-specific antibodies in mice, but only the hemagglutinin-peptide construct protected them against lethal challenge. In contrast to mouse hepatitis virus type 4 (MHV-4), MHV-A59 was not neutralized in vitro by MAb 5B19.2. Neither MHV-A59 nor MHV-4 was neutralized in vitro by antibodies comprising by the synthetic peptides. Our results demonstrated that antibodies elicited with a synthetic peptide comprising a B-cell epitope and a T-helper cell determinant can protect mice against an acute fetal mouse hepatitis virus infection.  相似文献   

8.
In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.  相似文献   

9.
Chemotherapy and chemoprophylaxis of influenza is one of the most important directions of health protection activity. Due to the high rate of drug-resistant strains of influenza virus, there is a need for the search and further development of new potent antivirals against influenza with a broad spectrum of activity. In the present study, a set of di-, tri- and tetrazole derivatives of adamantane was efficiently prepared and their anti-influenza activities evaluated against rimantadine-resistant strain A/Puerto Rico/8/34. In general, derivatives of tetrazole possessed the highest virus-inhibiting activity. We demonstrated that several compounds of this set exhibited much higher activity than the currently used antiviral rimantadine, a compound of related structure. Moreover, we showed that these azolo-adamantanes were significantly less toxic. This study demonstrates that influenza viruses can be inhibited by adamantyl-azoles and thus have potential for developing antiviral agents with an alternate mechanism of action.  相似文献   

10.
In order to evaluate the anti-influenza virus activity of the effective monomer from Folium Isatidis (FI) in vivo, we established mice model with viral pneumonia and divided them into 3 different dose groups, then observed their lung indexes, pulmonary pathological changes, pulmonary virus hemagglitination titers, living time and death rates. The results showed that the monomer could reduce the pulmonary index from 2.64 to 1.93, 1.63 and 1.40 (P<0.01) and decrease the hemagglitination titer from 1.15 to 0.84, 0.70 and 0.59 (P<0.01). In addition, different groups of FI could significantly lessen the mortality rate from 100% to 30%, 25% and 15%, and prolong the living time from 5.1d to 6.5d, 8.4d and 8.9d respectively(P<0.01). The high dose (75 mg/kg/d) has the similar effect with 100 mg/kg/d dose of virazole(P>0.05), and more effective than 200 mg/kg/d dose of antiviral liquor (P<0.05).  相似文献   

11.
Ethanolic extracts of 20 medicinal plants were screened for influenza virus NA inhibition and in vitro antiviral activities using MDCK cells in an MTT assay. The vaccine proteins of influenza virus A/New Caledonia/20/99 (H1N1), mouse-adapted influenza virus A/Guizhou/54/89 (A/G)(H3N2) and mouse-adapted influenza virus B/Ibaraki/2/85 (B/I) were used in the NA inhibition assay, and mouse-adapted influenza viruses A/PR/8/34 (H1N1), A/G and B/I were used in the in vitro antiviral assay. The results of the in vitro antiviral assay indicated that the A/G virus was the most susceptible and an extract of the leaf of CS possessed the highest in vitro anti-A/G virus activity (41.98%). Therefore, the A/G virus and the CS extract were selected for studying in vivo anti-influenza virus activity. BALB/c mice were treated with CS extract (100 mg/kg per day, 5 times) orally from 4 hr before to 4 days after infection. CS extract elicited significant production of anti-influenza virus IgG1 antibody in BAW and increased mouse weight compared to oseltamivir (0.1 mg/kg per day) on day 19 or water on days 17–19 of infection. Moreover, CS extract produced a higher anti-influenza virus IgA antibody level in BAW compared to oseltamivir, and a tendency towards an increase in anti-influenza virus IgA compared to water was shown. The results suggest that CS extract has a protective effect against influenza virus infection.  相似文献   

12.
【目的】旨在成功建立FMDVC57BL/6小鼠的实验感染模型。【方法】采用体内和体外循环适应传代的方法,选取一株对C57BL/6小鼠不敏感FMDVO/HK/CHA/99MF4,将其在C57BL/6小鼠(体内)和胎猪肾原代细胞FPK (体外)进行多次循环适应传代。【结果】成功获得一株对C57BL/6小鼠敏感的FMDVO/HK/CHA/99MF4C5株。【结论】本研究成功建立了FMDV突变株感染C57BL/6小鼠的实验动物模型,为未来FMD疫苗效力的评估和致病性相关的研究奠定了基础。  相似文献   

13.
【目的】构建一株含3A非结构蛋白104–115位氨基酸缺失的口蹄疫A型标记病毒,分析其生物学特性和发展标记疫苗的潜力。【方法】采用融合PCR技术,在当前流行毒株A/Sea-97/CHA/2014全长感染性克隆p QAHN中引入3A104–115位氨基酸的缺失,构建全长重组质粒。全长质粒经NotI线化后转染表达T7RNA聚合酶的稳定细胞系,拯救标记病毒。RT-PCR、序列分析、间接免疫荧光和Western blotting鉴定标记病毒。噬斑表型和一步生长曲线分析标记病毒的生物学特性,并用实验室开发的针对3A优势表位(AEKNPLE)的阻断ELISA方法分析其区分亲本和标记病毒感染的动物。【结果】成功拯救到一株含3A 104–115位氨基酸缺失的口蹄疫A型标记病毒,3A表位的缺失没有影响标记病毒的噬斑表型和一步生长曲线。3A单抗阻断ELISA可以明显区分标记病毒和亲本病毒感染的动物。【结论】本研究构建的3A蛋白104–115位氨基酸缺失的标记病毒可以作为发展口蹄疫鉴别诊断疫苗的候选毒株,用于我国未来口蹄疫A型的有效防控。  相似文献   

14.
A series of novel influenza neuraminidase (NA) inhibitors based on thiazole core were synthesized and evaluated for their ability to inhibit NA of influenza A virus (H3N2). All compounds were synthesized in good yields starting from commercially available 2-amino-4-thiazole-acetic ester using a suitable synthetic strategy. These compounds showed moderate inhibitory activity against influenza A NA. The most potent compound of this series is compound 4d (IC50?=?3.43 μM), which is about 20-fold less potent than oseltamivir, and could be used to design novel influenza NA inhibitors that exhibit increased activity based on thiazole ring.  相似文献   

15.
The new 2-alkyl-2-aminoadamantanes and analogues 4-10 were designed and synthesized by simplification of the structure of the potent anti-influenza virus A spiranic aminoadamantane heterocycles 2 and 3. The aim of the present work was to examine the effects of bulky and extended lipophilic moieties attached to amantadine 1 on binding to the M2 channel and the resulting antiviral potency. The binding affinities of the compounds to the M2 protein of influenza virus A/chicken/Germany/27 (Weybridge strain; H7N7) were measured for the first time using an assay based on quenching of Trp-41 fluorescence by His-37 protonation, and their antiviral potencies were evaluated against the replication of influenza virus A H2N2 and H3N2 subtypes and influenza virus B in MDCK cells. Of the various 2-alkyl-2-aminoadamantanes, and analogues, spiro[piperidine-2,2'-adamantane] 3 had the strongest M2 binding and antiviral potency, which were similar those of amantadine 1. The relative binding affinities suggested that the rigid carbon framework provided by the pyrrolidine or piperidine rings results in a more favorable orientation inside the M2 channel pore as compared to large, freely rotating alkyl groups. The aminoadamantane derivatives exhibited similar NMDA antagonistic activity to amantadine 1. A striking finding was the antiviral activity of the adamantanols 4, and 6, which lack any NMDA antagonist activity.  相似文献   

16.
A novel one-pot synthesis of 2,4-substituted 5-azolylthiopyrimidines is achieved by sequential Michael-addition of 3-iodochromones with mercaptoazole (or mercaptotriazoles) and then condensation with a variety of amidines. Compound A(1)B(6)C(1) exhibits a potent anti-influenza virus A activity with an IC(50) value of 21.56 mg/mL and SI value of 9.  相似文献   

17.
18.
The Galanthus nivalis agglutinin (GNA)-related lectin family exhibit significant anti-HIV and anti-HSV properties that are closely related to their carbohydrate-binding activities. However, there is still no conclusive evidence that GNA-related lectins possess anti-influenza properties. The hemagglutinin (HA) of influenza virus is a surface protein that is involved in binding host cell sialic acid during the early stages of infection. Herein, we studied the 3D-QSARs (three-dimensional quantitative structure–activity relationships) of lectin– and HA–sialic acid by molecular modeling. The affinities and stabilities of lectin– and HA–sialic acid complexes were also assessed by molecular docking and molecular dynamics simulations. Finally, anti-influenza GNA-related lectins that possess stable conformations and higher binding affinities for sialic acid than HAs of human influenza virus were screened, and a possible mechanism was proposed. Accordingly, our results indicate that some GNA-related lectins, such as Yucca filamentosa lectin and Polygonatum cyrtonema lectin, could act as drugs that prevent influenza virus infection via competitive binding. In conclusion, the GNA-related lectin family may be helpful in the design of novel candidate agents for preventing influenza A infection through the use of competitive combination against sialic acid specific viral infection.  相似文献   

19.
BackgroundAlstonia scholaris is a folk medicine used to treat cough, asthma and chronic obstructive pulmonary disease in China. Total alkaloids (TA) from A. scholaris exhibit anti-inflammatory properties in acute respiratory disease, which suggests their possible anti-inflammatory effect on influenza virus infection.PurposeTo assess the clinical use of TA by demonstrating their anti-influenza and anti-inflammatory effects and the possible mechanism underlying the effect of TA on influenza A virus (IAV) infection in vitro and to reveal the inhibitory effect of TA on lung immunopathology caused by IAV infection.MethodsAntiviral and anti-inflammatory activities were assessed in Madin-Darby canine kidney (MDCK) and A549 cells and U937-derived macrophages infected with influenza A/PR/8/34 (H1N1) virus. Proinflammatory cytokine levels were measured by real-time quantitative PCR and Bio-Plex assays. The activation of innate immune signaling induced by H1N1 virus in the absence or presence of TA was detected in A549 cells by Western blot. Furthermore, mice were infected intranasally with H1N1 virus and treated with TA (50, 25 and 12.5 mg/kg/d) or oseltamivir (60 mg/kg/d) for 5 days in vivo. The survival rates and body weight were recorded, and the viral titer, proinflammatory cytokine levels, innate immune cell populations and histopathological changes in the lungs were analyzed.ResultsTA significantly inhibited viral replication in A549 cells and U937-derived macrophages and markedly reduced cytokine and chemokine production at the mRNA and protein levels. Furthermore, TA blocked the activation of pattern recognition receptor (PRR)- and IFN-activated signal transduction in A549 cells. Critically, TA also increased the survival rate, reduced the viral titer, suppressed proinflammatory cytokine production and innate immune cell infiltration and improved lung histopathology in a lethal PR8 mouse model.ConclusionTA exhibits anti-viral and anti-inflammatory effects against IAV infection by interfering with PRR- and IFN-activated signal transduction.  相似文献   

20.
Chen Y  Luo W  Song H  Yin B  Tang J  Chen Y  Ng MH  Yeo AE  Zhang J  Xia N 《PloS one》2011,6(9):e24144

Background

We have raised a panel of broad spectrum neutralizing monoclonal antibodies against the highly pathogenic H5N1 avian influenza virus, which neutralize the infectivity of, and afford protection against infection by, most of the major genetic groups of the virus evolved since 1997. Peptide mimics reactive with one of these broad spectrum H5N1 neutralizing antibodies, 8H5, were identified from random phage display libraries.

Method

The amino acid residues of the most reactive 12mer peptide, p125 (DTPLTTAALRLV), were randomly substituted to improve its mimicry of the natural 8H5 epitope.

Result

133 reactive peptides with unique amino acid sequences were identified from 5 sub-libraries of p125. Four residues (2,4,5.9) of the parental peptide were preserved among all the derived peptides and probably essential for 8H5 binding. These are interspersed among four other residues (1,3,8,10), which exhibit restricted substitution and probably could contribute to binding, and another four (6,7,11,12) which could be randomly substituted and probably are not essential for binding. One peptide, V-1b, derived by substituting 5 of the latter residues is the most reactive and has a binding constant of 3.16×10−9 M, which is 38 fold higher than the affinity of the parental p125. Immunoassay produced with this peptide is specifically reactive with 8H5 but not also the other related broad spectrum H5N1 avian influenza virus neutralizing antibodies. Serum samples from 29 chickens infected with H5N1 avian influenza virus gave a positive result by this assay and those from 12 uninfected animals gave a negative test result.

Conclusion

The immunoassay produced with the 12 mer peptide,V1-b, is specific for the natural 8H5 epitope and can be used for detection of antibody against the broad spectrum neutralization site of H5N1 avian influenza virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号