首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A novel flow injection analysis‐direct chemiluminescence (FI‐CL) method has been developed for determination of trace amounts of dopamine (DA) based on the enhancing effect of DA on the CL reaction of luminol with an Ag(III) complex in alkaline solution. Under optimum conditions, CL intensities are proportional to the concentration of DA in the range of 1.0 × 10?10 to 4.0 × 10?8 mol L?1. The detection limit is 3.0 × 10?11 mol L?1 for DA (3s), with a relative standard deviation (n = 13) of 2.3% for 1.0 × 10?8 mol L?1 DA. This method has also been applied for the determination of DA in commercial pharmaceutical injection samples. On the basis of the CL spectra and the results of the free‐radical trapping experiment of this work, a reaction mechanism for this CL reaction is proposed and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Fang Zhao  Qi Fan  Huan Cai 《Luminescence》2014,29(3):219-224
A novel, rapid and sensitive chemiluminescence (CL) method combined with flow‐injection (FI) has been established for the estimation of olanzapine. This method is based on the CL signal generated between N‐chlorosuccinimide and olanzapine in an alkaline medium in the presence of calcein and Zn(II). Under optimum conditions, the CL signal was proportional to the olanzapine concentration ranging from 1.0 × 10‐10 to 3.0 × 10‐7 g/mL. The detection limit is 8.9 × 10‐11 g/mL olanzapine (3σ) and the relative standard deviation for 3.0 × 10‐9 g/mL of olanzapine is 1.9% (n = 11). The current CL method was applied to determine olanzapine in pharmaceutical formulations and biological fluids with satisfactory results. The possible CL reaction mechanism is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Flow injection (FI) methods are reported to determine retinol and α‐tocopherol based on its enhancement affect of lucigenin chemiluminescence (CL) in alkaline medium. Surfactants including Brij‐35, Triton X‐100, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate have been reported for the first time to enhance lucigenin CL intensity in the presence of retinol and α‐tocopherol. With Brij‐35, the CL intensity was enhanced by 67% for retinol and 58% for α‐tocopherol. CTAB was found to enhance the CL intensity by 16% for retinol whereas for α‐tocopherol, the CL intensity was quenched up to 95%. Retinol could be determined specifically in the presence of α‐tocopherol using CTAB. The calibration graphs were found to be linear up to 1.43 mg/L (R2 = 0.9985, n = 8) with a detection limit (3s) of 1.43 × 10?3 mg/L for retinol and 2.15 mg/L (R2 = 0.9989; n = 8) with a detection limit (3s) of 4.31 × 10?4 mg/L for α‐tocopherol. An injection throughput of 120/h, and relative standard deviations of 0.9–2.8% (n = 4) were achieved in the concentration range studied. The influence of common ions, excipients in pharmaceutical formulations and related organic compounds on the determination of retinol and α‐tocopherol individually was studied. The proposed methods were applied to determine retinol and α‐tocopherol in pharmaceutical formulations and human blood serum. The results did not differ significantly from the CL method and HPLC reference method at 95% confidence level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, rapid chemiluminescence (CL) method was described for the determination of piroxicam, a commonly used analgesic agent drug. A strong CL signal was detected when cerium(IV) sulphate was injected into tris‐(4,7‐diphenyl‐1,10‐phenanthrolinedisulphonic acid) ruthenium(II) (RuBPS)–piroxicam solution. The CL signal was proportional to the concentration of piroxicam in the range 2.8 × 10–8–1.2 × 10–5 mol/L. The detection limit was 2 × 10–8 mol/L and the relative standard deviation (RSD) was 3.7% (c = 7.0 × 10–7 mol/L piroxicam; n = 11). The proposed method was applied to the determination of piroxicam in pharmaceutical preparations in capsules, spiked serum and urine samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Hu Y  Li G  Zhang Z 《Luminescence》2011,26(5):313-318
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A novel, rapid and sensitive chemiluminescence (CL) method for the determination of oxytetracycline hydrochloride (OTCH) is described in this paper. The presented method was based on the fact that OTCH could immensely enhance the CL of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium (II) in acidic medium. Under optimal experimental conditions, CL intensity was favorably linear for OTCH in the range 5.0 × 10?7 to 5.0 × 10?5 g/ml, with a detection limit of 1.5 × 10?7 g/ml (S/N = 3). The relative standard detection was 4.76% for 5.0 × 10?6 g/ml (n = 11). This method was successfully applied to the analysis of OTCH in milk and egg white samples. According to the results of the kinetic curves for OTCH in the Ru(bipy)32+–Ce(SO4)2 CL system, together with CL and ultraviolet (UV)–visible spectra, the possible mechanism of the CL reaction is discussed briefly.  相似文献   

11.
Liu Y  Fu Z  Wang L 《Luminescence》2011,26(6):397-402
A rapid and simple capillary electrophoresis method coupled with chemiluminescent (CL) detection was proposed for analysis of isoniazid (ISO) based on the enhancement effect of ISO to CL emission of luminol‐periodate potassium reaction. Under the optimal conditions, ISO can be assayed in the range of 7.0 × 10?7 to 3.0 × 10?5 g mL?1 (R2 = 0.9990) with a limit of detection of 3.0 × 10?7 g mL?1 (signal‐to‐noise ratio of 3). The whole analysis process can be completed within 2.5 min with a theoretical plate number of 6258. The relative standard deviations of the signal intensity and the migration time were 3.1 and 1.4% for a standard sample at 1.0 × 10?5 g mL?1 (n = 5), respectively. The presented novel strategy was successfully applied to the determination of ISO in commercial pharmaceutical preparations and spiked human serum samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Aims: To investigate the effect of lactic acid (LA), copper (II), and monolaurin as natural antimicrobials against Cronobacter in infant formula. Methods and Results: The effect of LA (0·1, 0·2 and 0·3% v/v), copper (II) (10, 50 and 100 μg ml?1) and monolaurin (1000, 2000, and 3000 μg ml?1) suspended into tween‐80? or dissolved in ethanol against Cronobacter in infant formula was investigated. Reconstituted infant formula and powdered infant formula were inoculated with five strains of Cronobacter spp. at the levels of c. 1 × 106 CFU ml?1 and 1 × 103 CFU g?1, respectively. LA at 0·2% v/v had a bacteriostatic effect on Cronobacter growth, whereas 0·3% v/v LA resulted in c. 3 log10 reduction. Copper (II) at the levels of 50 μg ml?1 and 100 μg ml?1 elicited c. 1 and 2 log10 reductions, respectively. The combination of 0·2% LA and 50 μg ml?1 copper (II) resulted in a complete elimination of the organism. Monolaurin exhibited a slight inhibitory activity against Cronobacter (c. 1·5 log10 difference) compared to the control when ethanol was used to deliver monolaurin. Conclusions: A complete elimination of Cronobacter was obtained when a combination of sublethal concentrations of LA (0·2%) and copper (II) (50 μg ml?1) was used. Significance and Impact of the Study: The use of the synergistic interactive combination of LA and copper (II) could be beneficial to control Cronobacter in the infant formula industry.  相似文献   

13.
A novel flow‐injection chemiluminescence (FI‐CL) analysis method for the determination of gemifloxacin in the presence of cetyltrimethylammonium bromide (CTAB) surfactant micelles is described. Strong CL signal was generated during the reaction of gemifloxacin with diperiodatoargentate (III) in a sulfuric acid medium sensitized by CTAB. Under optimum experimental conditions, the CL intensity was linearly related to the concentration of gemifloxacin from 1.0 × 10‐9 to 3.0 × 10‐7 g/mL and the detection limit was 7.3 × 10‐10 g/mL (3σ). The relative standard deviation (RSD) was 1.7 % for a 3.0 × 10‐8 g/mL gemifloxacin solution (11 repeated measurements). The proposed method was successfully applied to the determination of gemifloxacin in pharmaceutical preparations and biological fluids. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Three mononuclear CuII complexes, [CuCl(naph‐pa)] ( 1 ), [Cu(bipy)(naph‐pa)]Cl ( 2 ), and [Cu(naph‐pa)(phen)]Cl ( 3 ) ((naph‐pa)=Schiff base derived from the condensation of 2‐hydroxynaphthalene‐1‐carbaldehyde and 2‐picolylamine (=2‐(aminomethyl)pyridine), bipy=2,2′‐bypiridine, and phen=1,10‐phenanthroline) were synthesized and characterized. Complex 1 exhibits square‐planar geometry, and 2 and 3 exhibit square pyramidal geometry, where Schiff base and bipy/phen act as NNO and as NN donor ligands, respectively. CT (Calf thymus)‐DNA‐binding studies revealed that the complexes bind through intercalative mode and show good binding propensity (intrinsic binding constant Kb: 0.98×105, 2.22×105, and 2.67×105 M ?1 for 1 – 3 , resp.). The oxidative and hydrolytic DNA‐cleavage activity of these complexes has been studied by gel electrophoresis: all the complexes displayed chemical nuclease activity in the presence and absence of H2O2. From the kinetic experiments, hydrolytic DNA cleavage rate constants were determined as 2.48, 3.32, and 4.10 h?1 for 1 – 3 , respectively. It amounts to (0.68–1.14)×108‐fold rate enhancement compared to non‐catalyzed DNA cleavage, which is impressive. The complexes display binding and cleavage propensity to DNA in the order of 3 > 2 > 1 .  相似文献   

16.
Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis–chemiluminescence (CE‐CL) detection method for phenols using a hemin–luminol–hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br? and F? could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE‐CL detection system because of the self‐polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin–luminol afforded a stable CE‐CL baseline. The indirect CE‐CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10?8 mol/L (o‐sec‐butylphenol), 4.9 × 10?8 mol/L (o‐cresol), 5.4 × 10?8 mol/L (m‐cresol), 5.3 × 10?8 mol/L (2,4‐dichlorophenol) and 7.1 × 10?8 mol/L (phenol). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A determination method for Co(II), Fe(II) and Cr(III) ions by luminol‐H2O2 system using chelating reagents is presented. A metal ion‐chelating ligand complex with a Co(II) ion and a chelating reagent like ethylenediaminetetraacetic acid (EDTA) produced highly enhanced chemiluminescence (CL) intensity as well as longer lifetime in the luminol‐H2O2 system compared to metals that exist as free ions. Whereas free Cu(II) and Pb(II) ions had a strong catalytic effect on the luminol‐H2O2 system, significantly, the complexes of Cu(II) and Pb(II) with chelating reagents lost their catalytic activity due to the chelating reagents acting as masking agents. Based on the observed phenomenon, it was possible to determine Co(II), Fe(II) and Cr(III) ions with enhanced sensitivity and selectivity using the chelating reagents of the luminol‐H2O2 system. The effects of ligand, H2O2 concentration, pH, buffer solution and concentrations of chelating reagents on CL intensity of the luminol‐H2O2 system were investigated and optimized for the determination of Co(II), Fe(II) and Cr(III) ions. Under optimized conditions, the calibration curve of metal ions was linear over the range of 2.0 × 10‐8 to 2.0 × 10‐5 M for Co(II), 1.0 × 10‐7 to 2.0 × 10‐5 M for Fe (II) and 2.0 × 10‐7 to 1.0 × 10‐4 M for Cr(III). Limits of detection (3σ/s) were 1.2 × 10‐8, 4.0 × 10‐8 and 1.2 × 10‐7 M for Co(II), Fe(II) and Cr(III), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Bacterial pathogen control is important in seafood production. In this study, a Cu/Co/Ni ternary nanoalloy (Cu/Co/Ni TNA) was synthesized using the oleylamine reducing method. It was found that Cu/Co/Ni TNA greatly enhanced the chemiluminescence (CL) signal of the hydroxylamine‐O‐sulfonic acid (HOSA)–luminol system. The CL properties of Cu/Co/Ni TNA were investigated systemically. The possible CL mechanism also was intensively investigated. Based on the enhanced CL phenomenon of Cu/Co/Ni TNA, a Cu/Co/Ni TNA, penicillin, and anti‐L. monocytogenes (Listeria monocytogenes) antibody‐based sandwich complex assay for detection of L. monocytogenes was established. In this sandwich CL assay, penicillin was employed to capture and enrich pathogenic bacteria with penicillin‐binding proteins (PBPs) while anti‐L. monocytogenes antibody was adopted as the specific recognition molecule to recognize L. monocytogenes. L. monocytogenes was detected sensitively based on this new Cu/Co/Ni TNA–HOSA–luminol CL system. The CL intensity was proportional to the L. monocytogenes concentration ranging from 2.0 × 102 CFU ml?1 to 3.0 × 107 CFU ml?1 and the limit of detection wa 70 CFU ml?1. The reliability and potential applications of our method was verified by comparison with official methods and recovery tests in environment and food samples.  相似文献   

19.
A rapid and sensitive flow injection chemiluminescence (FI–CL) method is described for the determination of 2‐methoxyestradiol (2ME) based on enhancement of the CL intensity from a potassium ferricyanide–calcein system in sodium hydroxide medium. The optimum conditions for the CL emission were investigated. Under optimized conditions, a linear calibration graph was obtained over the range 1.0 × 10‐8 to 1.0 × 10‐6 mol/L (r = 0.998) 2ME with a detection limit (3σ) of 5.4 × 10‐9 mol/L. The relative standard deviation (RSD) for 5.0 × 10‐7 mol/L 2ME was 1.7%. As a preliminary application, the proposed method was successfully applied to the determination of 2ME in injection solutions and serum samples. The possible CL mechanism was also proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A simple and sensitive chemiluminescence (CL) method combined with flow injection technique was developed for the determination of naproxen. It was based upon the weak CL signal arising from the reaction of KIO4 with H2O2 being significantly increased by naproxen in the presence of europium(III) ion. The experimental conditions that affected the CL signal were carefully optimized and the CL reaction mechanism was briefly discussed. Under the optimum conditions, the increment of CL intensity was proportional to the concentration of naproxen ranging from 5.0 × 10?8 to 5.0 × 10?6 g/mL. The detection limit was 1 × 10?8 g/mL naproxen and the relative standard deviation for 5.0 × 10?7 g/mL naproxen solution was 2.1% (n = 11). The proposed method was applied to the determination of naproxen in tablets and in spiked human urine samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号