首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Small RNA-mediated regulation of iPS cell generation   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
Human induced pluripotent stem cells (iPSCs) hold great promise for regenerative med- icine. Generating iPSCs from immunologically immature newborn umbilical cord blood mononu- clear cells (UCBMCs) is of great significance. Here we report generation of human iPSCs with great efficiency from UCBMCs using a dox-inducible lentiviral system carrying four Yamanaka factors. We generated these cells by optimizing the existing iPSC induction protocol. The UCBMC-derived iPSCs (UCB-iPSCs) have characteristics that are identical to pluripotent human embryonic stem cells (hESCs). This study highlights the use of UCBMCs to generate highly functional human iPSCs that could accelerate the development of cell-based regenerative therapy for patients suffering from various diseases.  相似文献   

5.
6.
7.
8.
Wang F  Yin Y  Ye X  Liu K  Zhu H  Wang L  Chiourea M  Okuka M  Ji G  Dan J  Zuo B  Li M  Zhang Q  Liu N  Chen L  Pan X  Gagos S  Keefe DL  Liu L 《Cell research》2012,22(4):757-768
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc(-/-) and Terc(+/-)) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.  相似文献   

9.
10.
11.
12.
2006年,首次报道在体外简单的转录因子就可以使体细胞重编程为多能性细胞。自从这项技术诞生以来,人们为改善诱导多能干细胞(iPSCs)技术做出了巨大努力,发展各种方法用于将重编程因子导入体细胞制备诱导多能干细胞(iPSCs)。诱导多能干细胞(iPSCs)技术彻底改变了人类对疾病发病机制的探索和药物开发的进程。本文简述了诱导多能干细胞的来源及诱导策略、近年来iPSCs在疾病建模、药物研发、再生医学等方面的应用,同时探讨了该技术当前存在的问题,并对未来进行了展望。  相似文献   

13.
Although the induction of genome integration-free induced pluripotent stem cells (iPSCs) has been reported, c-Myc was still required for the efficient generation of these cells. Herein, we report mouse strain-dependent differences in the c-Myc dependence for iPSC generation and the successful generation of genome integration-free iPSCs without c-Myc transduction using C57BL/6 mouse embryonic fibroblasts. We performed 49 independent experiments and obtained a total of 24 iPSC clones, including 18 genome integration-free iPSC clones. These iPSCs were indistinguishable from embryonic stem cells and from iPSCs generated using other methods. Furthermore, the generation of three-factor iPSCs free of virus vectors revealed the contribution of c-Myc to the genomic integration of external genes. C57BL/6 is an inbred mouse strain with substantial advantages for use in genetic and molecular biological studies due to its use in the whole mouse genome sequencing project. Thus, the present series of C57BL/6 iPSCs generated by various procedures will serve as a valuable resource for future genetic studies of iPSC generation.  相似文献   

14.
15.
Induced pluripotent stem cells (iPSCs) are considered patient‐specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c‐Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical‐grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non‐integrating viral and non‐viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.  相似文献   

16.
17.
18.
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs), exhibiting properties similar to those of embryonic stem cells (ESCs), has attracted much attention, with many studies focused on improving efficiency of derivation and unraveling the mechanisms of reprogramming. Despite this widespread interest, our knowledge of the molecular signaling pathways that are active in iPSCs and that play a role in controlling their fate have not been studied in detail. To address this shortfall, we have characterized the influence of different signals on the behavior of a model mouse iPSC line. We demonstrate significant responses of this iPSC line to the presence of serum, which leads to profoundly enhanced proliferation and, depending on the medium used, a reduction in the capacity of the iPSCs to self-renew. Surprisingly, this iPSC line was less sensitive to withdrawal of LIF compared to ESCs, exemplified by maintenance of expression of a Nanog-GFP reporter and enhanced self-renewal in the absence of LIF. While inhibition of phosphoinositide-3 kinase (PI3K) signaling decreased iPSC self-renewal, inhibition of Gsk-3 promoted it, even in the absence of LIF. High passages of this iPSC line displayed altered characteristics, including genetic instability and a reduced ability to self-renew. However, this second feature could be restored upon inhibition of Gsk-3. Collectively, our data suggest modulation of Gsk-3 activity plays a key role in the control of iPSC fate. We propose that more careful consideration should be given to characterization of the molecular pathways that control the fate of different iPSC lines, since perturbations from those observed in naïve pluripotent ESCs could render iPSCs and their derivatives susceptible to aberrant and potentially undesirable behaviors.  相似文献   

19.
20.
The induced pluripotent stem cells (iPSCs), derived by ectopic expression of reprogramming factors in somatic cells, can potentially provide unlimited autologous cells for regenerative medicine. In theory, the autologous cells derived from patient iPSCs should be immune tolerant by the host without any immune rejections. However, our recent studies have found that even syngeneic iPSC-derived cells can be immunogenic in syngeneic hosts by using a teratoma transplantation model (Nature 474:212–215, 2011). Recently two research groups differentiated the iPSCs into different germ layers or cells, transplanted those cells to the syngeneic hosts, and evaluated the immunogenicity of those cells. Both of the two studies support our conclusions that some certain but not all tissues derived from iPSCs can be immunogenic, although they claimed either “negligible” or “lack of” immunogenicity in iPSC derivatives (Nature 494:100–104, 2013; Cell Stem Cell 12:407–412, 2013). To test the immunogenicity of clinically valuable cells differentiated from human iPSCs are emergently required for translation of iPSC technology to clinics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号