首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
2.
3.
microRNAs modulate iPS cell generation   总被引:1,自引:0,他引:1  
Yang CS  Li Z  Rana TM 《RNA (New York, N.Y.)》2011,17(8):1451-1460
  相似文献   

4.
Generation of induced pluripotent stem cells (iPSCs) opens a new avenue in regenerative medicine. One of the major hurdles for therapeutic applications is to improve the efficiency of generating iPSCs and also to avoid the tumorigenicity, which requires searching for new reprogramming recipes. We present a systems biology approach to efficiently evaluate a large number of possible recipes and find those that are most effective at generating iPSCs. We not only recovered several experimentally confirmed recipes but we also suggested new ones that may improve reprogramming efficiency and quality. In addition, our approach allows one to estimate the cell-state landscape, monitor the progress of reprogramming, identify important regulatory transition states, and ultimately understand the mechanisms of iPSC generation.  相似文献   

5.
Current strategies to monitor reprogramming into induced pluripotent stem cells (iPSCs) are limited in that they rely on the recognition of advanced stage biomarkers or they involve the transduction of genetically-modified cells. These limitations are particularly problematic in high-throughput screenings where cell availability, low cost and a rapid experimental protocol are critical issues. Herein we report the application of a pluripotent stem cell fluorescent probe (i.e. CDy1) as a reporter for the rapid screening of chemicals in reprogramming iPSCs. CDy1 stains early-stage iPSCs at 7dpi as well as matured iPSCs; hence it can partially overcome the slow kinetics of the reprogramming process. As a proof of concept, we employed a CDy1-based screening in 384 well-plates to examine the effect of newly synthesized hydroxamic acid derivatives in reprogramming mouse fibroblasts transduced with Oct4, Sox2 and Klf-4 without c-Myc. One compound (1-26) was identified as a reprogramming enhancer by 2.5-fold and we confirmed that 1-26 behaves as a histone deacetylase (HDAC) inhibitor. The successful identification of novel small molecules enhancing the generation of iPSCs by means of a rapid and simple protocol demonstrates the suitability of this CDy1-based screening platform for the large scale and high-throughput evaluation of iPSC modulators.  相似文献   

6.
Induced pluripotency requires the expression of defined factors and culture conditions that support the self-renewal of embryonic stem (ES) cells. Small molecule inhibition of MAP kinase (MEK) and glycogen synthase kinase 3 (GSK3) with LIF (2i/LIF) provides an optimal culture environment for mouse ES cells and promotes transition to naive pluripotency in partially reprogrammed (pre-iPS) cells. Here we show that 2i/LIF treatment in clonal lines of pre-iPS cells results in the activation of endogenous Nanog and rapid downregulation of retroviral Oct4 expression. Nanog enables somatic cell reprogramming in serum-free medium supplemented with LIF, a culture condition which does not support induced pluripotency or the self-renewal of ES cells, and is sufficient to reprogram epiblast-derived stem cells to naive pluripotency in serum-free medium alone. Nanog also enhances reprogramming in cooperation with kinase inhibition or 5-aza-cytidine, a small molecule inhibitor of DNA methylation. These results highlight the capacity of Nanog to overcome multiple barriers to reprogramming and reveal a synergy between Nanog and chemical inhibitors that promote reprogramming. We conclude that Nanog induces pluripotency in minimal conditions. This provides a strategy for imposing naive pluripotency in mammalian cells independently of species-specific culture requirements.  相似文献   

7.
8.
miR-34 miRNAs provide a barrier for somatic cell reprogramming   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
Small RNA-mediated regulation of iPS cell generation   总被引:1,自引:0,他引:1  
  相似文献   

11.
Ionizing radiation causes not only targeted effects in cells that have been directly irradiated but also non-targeted effects in several cell generations after initial exposure. Recent studies suggest that radiation can enrich for a population of stem cells, derived from differentiated cells, through cellular reprogramming. Here, we elucidate the effect of irradiation on reprogramming, subjected to two different responses, using an induced pluripotent stem cell (iPSC) model. iPSCs were generated from non-irradiated cells, directly-irradiated cells, or cells subsequently generated after initial radiation exposure. We found that direct irradiation negatively affected iPSC induction in a dose-dependent manner. However, in the post-irradiated group, after five subsequent generations, cells became increasingly sensitive to the induction of reprogramming compared to that in non-irradiated cells as observed by an increased number of Tra1-81-stained colonies as well as enhanced alkaline phosphatase and Oct4 promoter activity. Comparative analysis, based on reducing the number of defined factors utilized for reprogramming, also revealed enhanced efficiency of iPSC generation in post-irradiated cells. Furthermore, the phenotypic acquisition of characteristics of pluripotent stem cells was observed in all resulting iPSC lines, as shown by morphology, the expression of pluripotent markers, DNA methylation patterns of pluripotency genes, a normal diploid karyotype, and teratoma formation. Overall, these results suggested that reprogramming capability might be differentially modulated by altered radiation-induced responses. Our findings provide that susceptibility to reprogramming in somatic cells might be improved by the delayed effects of non-targeted response, and contribute to a better understanding of the biological effects of radiation exposure.  相似文献   

12.
13.
14.
15.
16.
We developed nonintegrated methods to reprogram mouse embryonic fibroblast (MEF) cells into induced pluripotent stem cells (iPSCs) using pig pOct4, pSox2, and pc-Myc as well as human hKLF4, hAID, and hTDG that were carried by plasmid vectors. The 4F method employed pOct4, pSox2, pc-Myc, and hKLF4 to derive iPSC clones with naive embryonic stem cell (ESC)-like morphology. These 4F clones expressed endogenous mouse Nanog protein and could generate chimeras. In addition to the four conventional reprogramming factors used in the 4F method, hAID and hTDG were utilized in a 6F method to increase the conversion efficiency of reprogramming by approximately five-fold. One of the 6F plasmid derived iPSC (piPSC) clones was shown to be germline transmission competent.  相似文献   

17.
Induced pluripotent stem cells (iPSCs) are considered patient‐specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c‐Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical‐grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non‐integrating viral and non‐viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.  相似文献   

18.
19.
20.
Fair comparison of reprogramming efficiencies and in vitro differentiation capabilities among induced pluripotent stem cell (iPSC) lines has been hampered by the cellular and genetic heterogeneity of de novo infected somatic cells. In order to address this problem, we constructed a single cassette all-in-one inducible lentiviral vector (Ai-LV) for the expression of three reprogramming factors (Oct3/4, Klf4 and Sox2). To obtain multiple types of somatic cells having the same genetic background, we generated reprogrammable chimeric mice using iPSCs derived from Ai-LV infected somatic cells. Then, hepatic cells, hematopoietic cells and fibroblasts were isolated at different developmental stages from the chimeric mice, and reprogrammed again to generate 2nd iPSCs. The results revealed that somatic cells, especially fetal hepatoblasts were reprogrammed 1200 times more efficiently than adult hepatocytes with maximum reprogramming efficiency reaching 12.5%. However, we found that forced expression of c-Myc compensated for the reduced reprogramming efficiency in aged somatic cells without affecting cell proliferation. All these findings suggest that the Ai-LV system enables us to generate a panel of iPSC clones derived from various tissues with the same genetic background, and thus provides an invaluable tool for iPSC research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号