首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   21篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   13篇
  2013年   19篇
  2012年   22篇
  2011年   17篇
  2010年   15篇
  2009年   13篇
  2008年   16篇
  2007年   11篇
  2006年   12篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   10篇
  2001年   3篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1962年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
1.
2.
3.
The paper presents a transient, continuum, two-phase model of the tissue engineering in fibrous scaffolds, including transport equations for the flowing culture medium, nutrient and cell concentration with transverse and in-plane diffusion and cell migration, a novel feature of local in-plane transport across a phenomenological pore and innovative layer-by-layer cell filling approach. The model is successfully validated for the smooth muscle cell tissue engineering of a vascular graft using crosslinked, electrospun gelatin fiber scaffolds for both static and dynamic cell culture, the latter in a dynamic bioreactor with a rotating shaft on which the tubular scaffold is attached. Parametric studies evaluate the impact of the scaffold microstructure, cell dynamics, oxygen transport, and static or dynamic conditions on the rate and extent of cell proliferation and depth of oxygen accessibility. An optimized scaffold of 75% dry porosity is proposed that can be tissue engineered into a viable and still fully oxygenated graft of the tunica media of the coronary artery within 2 days in the dynamic bioreactor. Such scaffold also matches the mechanical properties of the tunica media of the human coronary artery and the suture retention strength of a saphenous vein, often used as a coronary artery graft.  相似文献   
4.
Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1-antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1-antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1-antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1-antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest.PDB Code(s): 4PYW  相似文献   
5.
Nanobodies are single chain antibodies that are uniquely produced in Camelidae, e.g. camels and llamas. They have the desirable features of small sizes (Mw < 14 kDa) and high affinities against antigens (Kd ~ nM), making them ideal as structural probes for biomedically relevant motifs both in vitro and in vivo. We have previously shown that nanobody binding to amyloidogenic human lysozyme variants can effectively inhibit their aggregation, the process that is at the origin of systemic amyloid disease. Here we report the NMR assignments of a new nanobody, termed NbSyn2, which recognises the C-terminus of the intrinsically disordered protein, human α-synuclein (aS), whose aberrant self-association is implicated in Parkinson’s disease.  相似文献   
6.
7.
Resistance of pathogens to drugs is a growing concern regarding many diseases. Parasites like Leishmania, Plasmodium and Entamoeba histolytica; and neoplastic cells, present the multidrug-resistant phenotype rendering chemotherapy ineffective. The acquired resistance of Leishmania to antimony has generated intense research on the mechanisms involved but the question has not yet been resolved. To test the hypothesis that drug efflux in Leishmania, as measured by flow cytometry using the fluorescent dye Rhodamine-123, is largely dependent on the number of efflux pumps an isolate can express, the amount of Pgp 170 molecules was assessed in ten field isolates (5 “resistant” and 5 “susceptible”) using: Western Blotting, Confocal and Transmission Electron Microscopy, and proteomics. Their survival after exposure to three antileishmanial drugs, in vitro, was evaluated and clinical data were compared to the in vitro results. All isolates were resistant to Glucantime but susceptible to Miltefosine, whilst Amphotericin B was more effective on the “susceptible” isolates. The MDR gene, expressing the transmembrane efflux pump Pgp 170, appears to play a key role in the phenomenon of drug resistance. When “susceptible” versus “resistant” parasites were compared, it was shown that the higher the number of Pgp 170 molecules the higher the Rhodamine-123 efflux from the parasite body and, when exposed to the drug, the number of efflux pumps increased. However, the rate of this increase was not linear and it is possible that there is a maximum number of Pgp 170 molecules an isolate can express. Nevertheless, the phenomenon is a complex one and other factors and proteins are involved in which the HSP-70 group proteins, detected in the “resistant” isolates, may play a significant role.  相似文献   
8.
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.  相似文献   
9.
10.
Calpains are a family of calcium-dependent intracellular cysteine proteases that regulate several physiological processes by limited cleavage of different substrates. The role of Calpain2 in embryogenesis is not clear with conflicting evidence from a number of mouse knockouts. Here we report the temporal and spatial expression of Calpain2 in Xenopus laevis embryos and address its role in Xenopus development. We show that Calpain2 is expressed maternally with elevated expression in neural tissues and that Calpain2 activity is spatially and temporally regulated. Using a Calpain inhibitor, a dominant negative and a morpholino oligonoucleotide we demonstrate that impaired Calpain2 activity results in defective convergent extension both in mesodermal and neural tissues. Specifically, Calpain2 downregulation results in loss of tissue polarity and blockage of mediolateral intercalation in Keller explants without affecting adherens junction turnover. We further show that Calpain2 is activated in response to Wnt5a and that the inhibitory effect of Wnt5a expression on animal cap elongation can be rescued by blocking Calpain2 function. This suggests that Calpain2 activity needs to be tightly regulated during convergent extension. Finally we show that expression of Xdd1 blocks the membrane translocation of Calpain2 suggesting that Calpain2 activation is downstream of Dishevelled. Overall our data show that Calpain2 activation through the Wnt/Ca2+ pathway and Dishevelled can modulate convergent extension movements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号