首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
Semiconductor quantum dots are inorganic fluorescent nanocrystals that, because of their unique optical properties compared with those of organic fluorophores, have become popular as fluorescent imaging probes. Although external light excitation is typically required for imaging with quantum dots, a new type of quantum dot conjugate has been reported that can luminesce with no need for external excitation. These self-illuminating quantum dot conjugates can be prepared by coupling of commercially available carboxylate-presenting quantum dots to the light-emitting protein Renilla luciferase. When the conjugates are exposed to the luciferase's substrate coelenterazine, the energy released by substrate catabolism is transferred to the quantum dots through bioluminescence resonance energy transfer, leading to quantum dot light emission. This protocol describes step-by-step procedures for the preparation and characterization of these self-illuminating quantum dot conjugates. The preparation process is relatively simple and can be done in less than 2 hours. The availability of self-illuminating quantum dot conjugates will provide many new possibilities for in vivo imaging and detection, such as monitoring of in vivo cell trafficking, multiplex bioluminescence imaging and new quantum dot-based biosensors.  相似文献   

2.
量子点在生物学中的研究进展   总被引:7,自引:1,他引:6  
量子点作为一种新型的荧光标记物近年来已在生物学中获得广泛应用。本文总结了量子点的主要光学特性,其中包括荧光激发和发射光谱特性、量子产额、光漂白特性和荧光寿命等。重点综述了量子点在细胞标记、活体和组织成像、组合标记和光动力学治疗等生物学中的应用及其最新研究进展。同时讨论了量子点在应用中可能存在的细胞毒性等主要问题,最后对量子点在生物学中的应用前景作了展望。  相似文献   

3.
Water-soluble quantum dots for biomedical applications   总被引:6,自引:0,他引:6  
Semiconductor nanocrystals are 1-10nm inorganic particles with unique size-dependent optical and electrical properties due to quantum confinement (so they are also called quantum dots). Quantum dots are new types of fluorescent materials for biological labeling with high quantum efficiency, long-term photostability, narrow emission, and continuous absorption spectra. Here, we discuss the recent development in making water-soluble quantum dots and related cytotoxicity for biomedical applications.  相似文献   

4.
The routing of fluorescent signals from NADH to quantum dots (QDs) has been a subject of extensive research for FRET based applications. In the present study, the spectral cross talk of NAD(+)/NADH with QDs was used to monitor the reaction of NAD(+)-dependent dehydrogenase enzyme. CdTe QD may undergo dipolar interaction with NADH as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, non-radiative energy transfer can take place from NADH to CdTe QD enhancing QDs fluorescence. Energy routing assay of NADH-QD was applied for detection of formaldehyde as a model analyte in the range 1000-0.01 ng/mL by the proposed technique. We observed proportionate quenching of CdTe QD fluorescence by NAD(+) and enhancement in the presence of NADH formed by various concentrations of enzyme (0.028-0.4 U). Hence, it was possible to detect formaldehyde in the range 1000-0.01 ng/mL with a limit of detection (LOD) at 0.01 ng/mL and regression coefficient R(2)=0.9982. Therefore, a unique optical sensor was developed for the detection of the formaldehyde in sensitive level based on the above mechanism. This method can be used to follow the activity of NAD(+)-dependent enzymes and detection of dehydrogenases in general.  相似文献   

5.
Luminescent quantum dots for multiplexed biological detection and imaging   总被引:48,自引:0,他引:48  
Recent advances in nanomaterials have produced a new class of fluorescent labels by conjugating semiconductor quantum dots with biorecognition molecules. These nanometer-sized conjugates are water-soluble and biocompatible, and provide important advantages over organic dyes and lanthanide probes. In particular, the emission wavelength of quantum-dot nanocrystals can be continuously tuned by changing the particle size, and a single light source can be used for simultaneous excitation of all different-sized dots. High-quality dots are also highly stable against photobleaching and have narrow, symmetric emission spectra. These novel optical properties render quantum dots ideal fluorophores for ultrasensitive, multicolor, and multiplexing applications in molecular biotechnology and bioengineering.  相似文献   

6.
Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.   总被引:55,自引:0,他引:55  
M Han  X Gao  J Z Su  S Nie 《Nature biotechnology》2001,19(7):631-635
Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.  相似文献   

7.
The use of fluorescence calibration beads has been the hallmark of quantitative flow cytometry. It has enabled the direct comparison of interlaboratory data as well as quality control in clinical flow cytometry. In this article, we describe a simple method for producing color-generalizable calibration beads based on streptavidin functionalized quantum dots. Based on their broad absorption spectra and relatively narrow emission, which is tunable on the basis of dot size, quantum dot calibration beads can be made for any fluorophore that matches their emission color. In an earlier publication, we characterized the spectroscopic properties of commercial streptavidin functionalized dots (Invitrogen). Here we describe the molecular assembly of these dots on biotinylated beads. The law of mass action is used to readily define the site densities of the dots on the beads. The applicability of these beads is tested against the industry standard, namely commercial fluorescein calibration beads. The utility of the calibration beads is also extended to the characterization surface densities of dot-labeled epidermal growth factor ligands as well as quantitative indicators of the binding of dot-labeled virus particles to cells.  相似文献   

8.
由于具有优异的光学特性,量子点在生物医学领域内的研究和应用取得了一些有意义的进展,同时也引起了新药开发人员的兴趣.本文概述了量子点在新药开发中所具有的优势,分析了量子点在药物传输、药物筛选和药靶确证方面的潜在应用,进一步讨论了当前量子点应用于新药开发存在的问题和不足.  相似文献   

9.
In recent years, quantum dots (Qdot), with their unique physical, chemical, and optical properties, have been used extensively as probes to visualize several cell membrane receptors and extracellular biomolecules. However, Qdot-based intracellular imaging has always been associated with vital lacunas. High affinity between quantum dots may induce serious aggregation in the cytoplasm; as a result, quantum dot aggregates are usually misinterpreted as quantum dot-probed intracellular molecules. Moreover, due to the more viscous nature of the cytoplasm versus the extracellular aqueous media, aggregation issues become more severe during intracellular studies. In this work, we suggest direct nondestructive serotonin imaging in an intact cell using the quantum dot-based immunoassay with a rapid tunable multicolor imaging system based on the acousto-optic tunable filter. Any false-positive intracellular serotonin molecules that appeared due to the aggregation of quantum dots could be completely discriminated from the real intracellular serotonin granules through multicolor cellular imaging. The developed method is quick and has wide applicability in targeting various intracellular proteins, coenzymes, and micronutrients.  相似文献   

10.
Many cellular metabolites can be measured with high sensitivity using bioluminescent techniques. These metabolites are coupled to an appropriate enzyme to produce NAD(P)H, which can then be coupled to the bioluminescent reactions. The sensitivity of bioluminescence cannot be readily applied to methods in which cellular metabolites consume NAD(P)H because of the difficulty in measuring, with sufficient sensitivity, decreases in the concentration of NAD(P)H against a high background NAD(P)H concentration. We have overcome these technical difficulties by developing a bioluminescent reagent to measure the production of NAD(P)+. Assays for creatine/creatine phosphate, pyruvate, and succinate, as well as the kinetic measurement of lactate, are described for a range of biological material. The assays are highly sensitive, quantitative, and reproducible and show no sample-specific inhibition. The range of assays and the diverse biological material tested suggests that NAD(P)+ bioluminescence has a wide potential for application.  相似文献   

11.
Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping   总被引:20,自引:0,他引:20  
The use of near-infrared or infrared photons is a promising approach for biomedical imaging in living tissue. This technology often requires exogenous contrast agents with combinations of hydrodynamic diameter, absorption, quantum yield and stability that are not possible with conventional organic fluorophores. Here we show that the fluorescence emission of type II quantum dots can be tuned into the near infrared while preserving absorption cross-section, and that a polydentate phosphine coating renders them soluble, disperse and stable in serum. We then demonstrate that these quantum dots allow a major cancer surgery, sentinel lymph node mapping, to be performed in large animals under complete image guidance. Injection of only 400 pmol of near-infrared quantum dots permits sentinel lymph nodes 1 cm deep to be imaged easily in real time using excitation fluence rates of only 5 mW/cm(2). Taken together, the chemical, optical and in vivo data presented in this study demonstrate the potential of near-infrared quantum dots for biomedical imaging.  相似文献   

12.
恶性胶质瘤年发病率约为5/100,000。美国每年有超过14,000例的新发恶性脑胶质瘤患者。治疗主要以手术治疗为主,手术肿瘤的切除程度影响患者的预后。外科手术治疗脑肿瘤需要精确定位脑肿瘤组织在正常脑组织中的位置以便能够获得精确的组织活检和肿瘤的完全切除。量子点是稳定存在的,产生荧光的可视化半导体纳米晶体。静脉注射量子点伴随着网状内皮系统和巨噬细胞的隔离。巨噬细胞可渗入到肿瘤组织并且能够吞噬通过静脉注射的光量子来产生可视化的肿瘤标记。通过巨噬细胞介导,将光量子运输至肿瘤组织展现了一种新兴技术来标记术前肿瘤组织。由于肿瘤组织中的光量子可以被光学成像和光谱学工具来探测,因此在脑肿瘤组织活检和切除中可以为外科医生提供可视化得实时反馈。  相似文献   

13.
Photoluminescent (PL) carbon quantum dots (CQDs) were prepared successfully using a facile and green procedure. They exhibited striking blue fluorescence and excellent optical properties, with a quantum yield as high as 61.44%. Due to the fluorescence quenching effect and the stronger complexing ability of the phosphoric acid group of 1‐hydroxyethane‐1,1‐diphosphonic acid (HEDP) to Fe3+ , CQDs doped with Fe3+ were adequately constructed as an efficient and sensitive fluorescent probe for HEDP‐specific sensing. The proposed fluorescent probe had a sensitive and rapid response in the range 5–70 μ M. Furthermore, quantitative molecular surface (QMS) analysis based on the Multiwfn program was applied to explore the complexation mode of HEDP and metal ions. The distribution of electrostatic potential (ESP), average local ionization energy (ALIE), the minimum value points and the position of the lone pair electrons on the surface of molecular van der Waals were further determined. More strikingly, this experiment achieved the quantitative detection of water‐soluble phosphonate‐HEDP, for the first time using fluorescence spectrometry. It has been proved to be an effective and intuitive sensing method for the detection of HEDP in real samples.  相似文献   

14.
Semiconductor quantum dots represent a novel class of fluorophores with unique physical and chemical properties which could enable a remarkable broadening of the current applications of fluorescent imaging and optical diagnostics. Complexes of quantum dots and antibodies are promising visualising agents for fluorescent detection of selective biomarkers overexpressed in tumor tissues. Here we describe the construction of self-assembling fluorescent complexes of quantum dots and anti-HER1 or anti-HER2/neu scFv antibodies and their interactions with cultured tumor cells. A binding strategy based on a very specific non-covalent interaction between two proteins, barnase and barstar, was used to connect quantum dots and the targeting antibodies. Such a strategy allows combining the targeting and visualization functions simply by varying the corresponding modules of the fluorescent complex.  相似文献   

15.
We report on metal–non‐metal doped carbon dots with very high photoluminescent properties in solution. Magnesium doping to tamarind extract associated with nitrogen‐doping is for the first time reported here which also produce very high quantum yield. Our aim is to develop such dual doped carbon dots which can also serve living cell imaging with easy permeation towards cells and show non‐cytotoxic attributes. More importantly, the chemical signatures of the carbon dots unveiled in this work can support their easy solubilization into water; even in sub‐ambient temperature. The cytotoxicity assay proves the almost negligible cytotoxic effect against human cell lines. Moreover, the use of carbon dots in UV‐active marker and polymer composites are also performed which gave clear distinguishable features of fluorescent nanoparticles. Hitherto, the carbon dots can be commercially prepared without adopting any rigorous methods and also can be used as non‐photo‐bleachable biomarkers of living cells.  相似文献   

16.
Finite difference time domain (FDTD) simulations were performed on two different plasmonic sub-wavelength photonic templates embedded with CdSe quantum dots. Tunable loading of these templates with plasmonic nano antenna allowed control of the emission from the embedded quantum dots. We discuss how large loading of nano antenna can effectively control the optical density of states for the quantum dots leading to enhancement of their radiative decay rates as observed in experiments. On the other hand, at low level of loading, while FDTD fails to capture the observed enhancement of decay rates in experiment, an alternative mechanism is suggested to exist in such cases. Thus, subtle interplay of multiple mechanisms engineered by appropriate placement and loading of plasmonic nano antenna in such templates is demonstrated as an effective method to control optical density of states and hence spontaneous emission of embedded quantum dots.  相似文献   

17.
Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd2+ ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.  相似文献   

18.
A series of glutathione (GSH)-capped aqueous CdS quantum dots (QDs) with strong photoluminescence (PL) were prepared by changing the reaction temperatures and times on the basis of optimization of the mole ratio of S to Cd. The reaction time was shortened to about 1/10 compared with that reported previously by increasing the reaction temperature. The absorption and fluorescence spectra indicated good optical properties with PL full width of half-maximum (FWHM) of about 100 nm. The excitation spectrum was broad and continuous in the range 200-480 nm. The PL quantum efficiency (QE) of the prepared QDs was about 36% compared with rhodamine 6G (95%). The shape and size of the CdS QDs were characterized using high-resolution transmission electron microscopy (HRTEM). The prepared QDs were conjugated with bovine serum albumin (BSA) and onion inner pellicle cells and used as fluorescence probes for the first time. The results demonstrated that the fluorescence of CdS can be enhanced by BSA and the enhanced fluorescence intensity is proportional to the concentration of BSA in the range 1.0-10 mg/L. The aggregation of CdS in onion inner pellicle cells and its fluorescence images indicated that the QDs can aggregate around cells soaked for 8 h in CdS solution but enter the interior of cells and become aggregated to the nucleus when they are soaked in CdS solution for longer, e.g. 98 h.  相似文献   

19.
To co-opt the remarkable optical properties and benefits of quantum dots and broadly used metal-NTA:histidine tag interactions, we generated metal-NTA conjugated quantum dots and applied them to Western blot analysis. In our hands, this application dramatically reduced the time and effort required for Western blot analysis, whereas the sensitivity was comparable to that of the conventionally available anti-histidine tag antibody. Our quantum dots were stable up to 6 months without precipitation. Interestingly, under our conditions, cobalt-NTA showed better detection ability than did nickel-NTA. Our new method may be able to facilitate and simplify the routinely used protein detection procedure.  相似文献   

20.
CdTe quantum dots, 3.28 nm in size, were synthesized using a one‐step method in an aqueous medium. The CdTe quantum dots were successfully employed as hybrid phosphors for white light‐emitting diode (LED) devices by combining them with yellow‐emitting YAG:Ce phosphor. The color‐rendering index value and International Commission on illumination coordinates for hybrid phosphor white LEDs were 75 and (x = 0.30, y = 0.29), respectively. Compared with conventional phosphors, semiconductor quantum dots have larger band gap energy and broader absorption features, and can be excited more efficiently by optical pumping sources. The results confirmed that the high color‐rendering index value of the white LED was due to the CdTe quantum dots introduced in the hybrid phosphor system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号