首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Semiconductor quantum dots are inorganic fluorescent nanocrystals that, because of their unique optical properties compared with those of organic fluorophores, have become popular as fluorescent imaging probes. Although external light excitation is typically required for imaging with quantum dots, a new type of quantum dot conjugate has been reported that can luminesce with no need for external excitation. These self-illuminating quantum dot conjugates can be prepared by coupling of commercially available carboxylate-presenting quantum dots to the light-emitting protein Renilla luciferase. When the conjugates are exposed to the luciferase's substrate coelenterazine, the energy released by substrate catabolism is transferred to the quantum dots through bioluminescence resonance energy transfer, leading to quantum dot light emission. This protocol describes step-by-step procedures for the preparation and characterization of these self-illuminating quantum dot conjugates. The preparation process is relatively simple and can be done in less than 2 hours. The availability of self-illuminating quantum dot conjugates will provide many new possibilities for in vivo imaging and detection, such as monitoring of in vivo cell trafficking, multiplex bioluminescence imaging and new quantum dot-based biosensors.  相似文献   

2.
This communication describes a quantum dot probe that can be activated by a reporter enzyme, beta-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated beta-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum dots. In assembling this nanoprobe, we have found that both the distance between substrates and the quantum dot surface, and the density of substrates are important for its function. The fluorescence emission from quantum dots can be efficiently quenched (up to 95%) by Cy5 due to FRET. Our final quantum dot probe, assembled with QD605 and 1:1 mixture of biotin and a Cy5-labeled lactam, can be activated by 32microg/mL of beta-lactamase with 4-fold increase in the fluorescence emission.  相似文献   

3.
Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd2+ ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.  相似文献   

4.
Quantum dots are the nanoparticles that are recently emerging as an alternative to organic fluorescence probes in cell biology and biomedicine, and have several predictive advantages. These include their ⑴broad absorption spectra allowing visualization with single light source, ⑵exceptional photo-stability allowing long term studies and ⑶narrow and symmetrical emission spectrum that is controlled by their size and material composition. These unique properties allow simultaneous excitation of different size of quantum dots with a single excitation light source, their simultaneous resolution and visualization as different colors. At present there are only a few studies that have tested quantum dots in cellular imaging. We describe here the use of quantum dots in mortalin imaging of normal and cancer cells. Mortalin staining pattern with quantum dots in both normal and cancer cells mimicked those obtained with organic florescence probes and were considerably stable.  相似文献   

5.
The Photoluminescence of quantum dots have been found to be a useful tool for the detection of small to medium sized analyte molecules in a host-guest environment. By the incorporation of quantum dots into molecularly imprinted polymers, which can offer shape and selectivity, the former can respond by quenching the photoluminescence emission upon template binding. In this work host polymers were synthesized and cased into thin films using functional monomers such as methacrylic acid (MAA), CdSe/ZnS core-shell derivatized with 4-vinyl pyridine and ethylene glycol dimethacrylic acid (EGDMA) as a cross-linker. The intensity of photoluminescence emission is detected upon analyte binding.  相似文献   

6.
Fluorescent proteins from the green fluorescent protein (GFP) family interact strongly with CdSe/ZnS quantum dots. Photoluminescence of GFP5 is suppressed by red-emitting CdSe/ZnS quantum dots with high efficiency in a pH-dependent manner. The elevated degree of quenching, around 90%, makes it difficult to analyze the remaining signal, and it is not clear yet whether FRET is the reason behind the quenching. When the donor is a green-emitting CdSe/ZnS quantum dot and the acceptor is the HcRed1 protein, it is possible to detect quenching of the donor and sensitized emission from the acceptor. It was verified that the sensitized emission has the low anisotropy characteristic of FRET. The present characterization identifies donor-acceptor pairs formed by fluorescent proteins and CdSe/ZnS quantum dots that are suitable for the exploration of cellular events. These donor-acceptor pairs take advantage of the exceptional photochemical properties of quantum dots allied with the unique ability of fluorescent proteins to act as gene-based fluorescent probes.  相似文献   

7.
Exciton-plasmon coupling can significantly modify the spectral response of semiconductor quantum dots in a metal nanoparticle-semiconductor complex system. β-In2S3 quantum dots of size ~3 nm and Ag nanospheres of size ~100 nm were synthesized by chemical route and coated over glass substrates. In the strong coupling regime, the plasmons are shown to mediate indirect Coulomb interaction between the quantum dots. In the proximity of Ag plasmons, the excitonic binding energy of the β-In2S3 quantum dots increases by ~500 meV, indicating that the interaction potential between the quantum dots is positive and repulsive in nature. This interaction also leads to strong coupling of the defect levels in the SQD complex. The defect emission wavelength can be enhanced by an order of 102 or shifted from red region (~650 nm) to green (~550 nm) by controlling the plasmon-induced defect level coupling. The experimental observation demonstrates one of the theoretically predicted consequences of exciton-plasmon interaction. This work demonstrates the possibility of harnessing the potential of the two complimentary systems (semiconductor quantum dots and metal nanoparticles) to achieve controllable emission and absorption properties for fabrication of nano plasmonic devices.  相似文献   

8.
Detection of tumor marker CA125 in ovarian carcinoma using quantum dots   总被引:11,自引:0,他引:11  
The fluorescent labeling of biological materials usingsmall-molecule organic dyes is widely employed in bio-logical imaging and clinical diagnosis. Organic fluoro-phores, however, have certain characteristics that limittheir advantages in some applications. These limitationsinclude narrow excitation bands and broad emissionbands with red spectral tails, which make the simultaneousevaluation of several light-emitting probes difficult due tospectral overlap. Also, many organic dyes exhibit highp…  相似文献   

9.
Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.  相似文献   

10.
Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping   总被引:20,自引:0,他引:20  
The use of near-infrared or infrared photons is a promising approach for biomedical imaging in living tissue. This technology often requires exogenous contrast agents with combinations of hydrodynamic diameter, absorption, quantum yield and stability that are not possible with conventional organic fluorophores. Here we show that the fluorescence emission of type II quantum dots can be tuned into the near infrared while preserving absorption cross-section, and that a polydentate phosphine coating renders them soluble, disperse and stable in serum. We then demonstrate that these quantum dots allow a major cancer surgery, sentinel lymph node mapping, to be performed in large animals under complete image guidance. Injection of only 400 pmol of near-infrared quantum dots permits sentinel lymph nodes 1 cm deep to be imaged easily in real time using excitation fluence rates of only 5 mW/cm(2). Taken together, the chemical, optical and in vivo data presented in this study demonstrate the potential of near-infrared quantum dots for biomedical imaging.  相似文献   

11.
We report tuning of photoluminescence enhancement and quenching from closed packed monolayers of cadmium selenide quantum dots doped with gold nanoparticles. Plasmon-mediated control of the emission intensity from the monolayers is achieved by varying the size and packing density of the quantum dots as well as the doping concentration of gold nanoparticles. We observe a unique packing density dependent crossover from enhancement to quenching and vice versa for fixed size of quantum dots and doping concentration of gold nanoparticles. We suggest that this behavior is indicative of a crossover from single particle to collective emission from quantum dots mediated by gold nanoparticles.  相似文献   

12.
Finite difference time domain (FDTD) simulations were performed on two different plasmonic sub-wavelength photonic templates embedded with CdSe quantum dots. Tunable loading of these templates with plasmonic nano antenna allowed control of the emission from the embedded quantum dots. We discuss how large loading of nano antenna can effectively control the optical density of states for the quantum dots leading to enhancement of their radiative decay rates as observed in experiments. On the other hand, at low level of loading, while FDTD fails to capture the observed enhancement of decay rates in experiment, an alternative mechanism is suggested to exist in such cases. Thus, subtle interplay of multiple mechanisms engineered by appropriate placement and loading of plasmonic nano antenna in such templates is demonstrated as an effective method to control optical density of states and hence spontaneous emission of embedded quantum dots.  相似文献   

13.
量子点在生物学中的研究进展   总被引:7,自引:1,他引:6  
量子点作为一种新型的荧光标记物近年来已在生物学中获得广泛应用。本文总结了量子点的主要光学特性,其中包括荧光激发和发射光谱特性、量子产额、光漂白特性和荧光寿命等。重点综述了量子点在细胞标记、活体和组织成像、组合标记和光动力学治疗等生物学中的应用及其最新研究进展。同时讨论了量子点在应用中可能存在的细胞毒性等主要问题,最后对量子点在生物学中的应用前景作了展望。  相似文献   

14.
Water-soluble quantum dots for biomedical applications   总被引:6,自引:0,他引:6  
Semiconductor nanocrystals are 1-10nm inorganic particles with unique size-dependent optical and electrical properties due to quantum confinement (so they are also called quantum dots). Quantum dots are new types of fluorescent materials for biological labeling with high quantum efficiency, long-term photostability, narrow emission, and continuous absorption spectra. Here, we discuss the recent development in making water-soluble quantum dots and related cytotoxicity for biomedical applications.  相似文献   

15.
The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work, we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot 1005-0045, and QD585, lot 0905-0031, from Invitrogen). This is the first step in the development of calibration beads to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited state lifetime measurements, to characterize their spectroscopic behavior, concentrating on the 400- to 500-nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480 nm excitation up to 0.4 at 450 nm and down again to 0.15 at 350 nm. For QD585, QY values were constant at 0.2 between 500 and 400 nm, but they dropped to 0.1 at 350 nm. We attribute the wavelength dependencies to heterogeneity in size and surface defects in the QD525, consistent with characteristics described previously in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots and the quantitative needs of assay development in biological applications.  相似文献   

16.
Quantum dots are semiconducting nanoparticles that can be prepared with interesting optical properties. The fluorescent properties of quantum dots are one of the key advantages for their use as optical labels for biorecognition events and biocatalytic processes. We have prepared semiconductor quantum dots conjugated with Nile Blue (NB), and demonstrate that NB-functionalized quantum dots can act as versatile probes to analyze different biocatalyzed transformations, and can be used for the quantitative detection of NADPH as well as NADH. This approach provides a new path for the optical detection of NAD(P)H and for the quantitative analysis of NAD(P)(+)-dependent biotransformations.  相似文献   

17.
Due to their unique fluorescent properties, quantum dots present a great potential for biolabelling applications; however, the toxic interactions of quantum dots with biopolymers are little known. The toxic interactions of glutathione-capped CdTe quantum dots with trypsin were studied in this paper using synchronous fluorescence spectroscopy, fluorescence emission spectra, and UV–vis absorption spectra. The interaction between CdTe quantum dots and trypsin resulted in structure changes of trypsin and inhibited trypsin's activity. Fluorescence emission spectra revealed that the quenching mechanism of trypsin by CdTe quantum dots was a static quenching process. The binding constant and the number of binding sites at 288 and 298 K were calculated to be 1.98 × 106 L mol−1 and 1.37, and 6.43 × 104 L mol−1 and 1.09, respectively. Hydrogen bonds and van der Waals' forces played major roles in this process.  相似文献   

18.
We have developed a new method using the Qbead system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral 'barcodes' are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein-protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications.  相似文献   

19.
Eu‐doped ZnSe:/ZnS quantum dots (formed as ZnSe:Eu/ZnS QDs) were successfully synthesized by a two‐step wet chemical method: nucleation doping and epitaxial shell growing. The sensitization characteristics of Eu‐doped ZnSe and ZnSe/ZnS core/shell QD are studied in detail using photoluminescence (PL), PL excitation spectra (PLE) and time‐resolved PL spectroscopy. The emission intensity of Eu ions is enhanced and that of ZnSe QDs is decreased, implying that energy was transferred from the excited ZnSe host materials (the donor) to the doped Eu ions (the acceptor). PLE reveals that the ZnSe QDs act as an antenna for the sensitization of Eu ions through an energy transfer process. The dynamics of ZnSe:Eu/ZnS core/shell quantum dots with different shell thicknesses and doping concentrations are studied via PL spectra and fluorescence lifetime spectra. The maximum phosphorescence efficiency is obtained when the doping concentration of Eu is approximately 6% and the sample showed strong white light under ultraviolet lamp illumination. By surface modification with ZnS shell layer, the intensity of Eu‐related PL emission is increased approximately three times compared with that of pure ZnSe:Eu QDs. The emission intensity and wavelength of ZnSe:Eu/ZnS core/shell quantum dots can be modulated by different shell thickness and doping concentration. The results provide a valuable insight into the doping control for practical applications in laser, light‐emitting diodes and in the field of biotechnology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The use of fluorescence calibration beads has been the hallmark of quantitative flow cytometry. It has enabled the direct comparison of interlaboratory data as well as quality control in clinical flow cytometry. In this article, we describe a simple method for producing color-generalizable calibration beads based on streptavidin functionalized quantum dots. Based on their broad absorption spectra and relatively narrow emission, which is tunable on the basis of dot size, quantum dot calibration beads can be made for any fluorophore that matches their emission color. In an earlier publication, we characterized the spectroscopic properties of commercial streptavidin functionalized dots (Invitrogen). Here we describe the molecular assembly of these dots on biotinylated beads. The law of mass action is used to readily define the site densities of the dots on the beads. The applicability of these beads is tested against the industry standard, namely commercial fluorescein calibration beads. The utility of the calibration beads is also extended to the characterization surface densities of dot-labeled epidermal growth factor ligands as well as quantitative indicators of the binding of dot-labeled virus particles to cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号