首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
半导体量子点具有长时间、多目标和灵敏度高等独特的光化学性质,这些特性使量子点成为细胞标记和生物应用中得到了广泛的应用。利用量子点目标定位癌细胞,对于寻找癌变部位具有指导的作用。近年来,利用量子点作为光动力学治疗癌症的能量供体也得到了一定的研究。简单地介绍了量子点独特的光学性质,并从量子点标记癌细胞、可视化癌细胞表面功能和在光动力学治疗癌症等方面综述了量子点在癌症诊断和治疗中的应用。  相似文献   

2.
为了为利用量子点标记细胞、组织,进一步研究其功能提供新的方法,本实验观察了3种发射波长的量子点(quautum dost,QDs)对所标记的小鼠腹腔巨噬细胞和正常皮肤的影响。利用发射波长610mm的红色荧光水溶液(量子点610)、发射波长为523mm的绿色荧光水溶液(量子点523)和发射波长576nm的黄色荧光脂溶性溶液(量子点576)的3种量子点(5mg/ml)以及具有吞噬能力的小鼠腹腔巨噬细胞、正常皮肤为载体,观察不同的除菌方式、温度、封片剂及固定剂对量子点标记细胞、组织的影响,为量子点在生物体内的应用及在生物制片过程中对其性能的影响等研究奠定基础。  相似文献   

3.
前哨淋巴结(sentinel lymph node,SLN)是肿瘤淋巴结转移的第一站,SLN活检肿瘤阳性的患者需要做系统性淋巴结清扫;SLN活检阴性的患者,不需要做系统性淋巴结清扫,可以缩短手术时间,降低手术费用,减少手术并发症;目前识别SLN的方法包括生物活性染料示踪法,放射性核素示踪法,联合示踪法,纳米炭(carbon nanoparticles,CNP)标记前哨淋巴结活检技术以及吲哚菁绿(Indocyanine Green,ICG)荧光标记法。SLN活检技术在乳腺癌、甲状腺癌、胃癌、恶性黑色素瘤、宫颈癌、子宫内膜癌等肿瘤中皆有不同程度的研究。本文通过复习文献,对前哨淋巴结检测方法予以归纳及其在常见肿瘤中的研究进展予以综述,旨在为恶性肿瘤临床治疗提供参考。  相似文献   

4.
脑肿瘤干细胞   总被引:3,自引:0,他引:3  
脑肿瘤尤其是恶性脑胶质瘤,由于生长及复发快,预后极差,所以找到胶质瘤复发的根源,提高胶质瘤病人的存活率,已成为国内外的肿瘤生物学工作者和临床医学工作者亟待解决的难题。近年来肿瘤干细胞概念的提出及脑肿瘤干细胞的分离及鉴定,为脑肿瘤的研究提供了新的切入点,同时可成为肿瘤治疗新的靶标,为根治脑肿瘤带来了光明的前景。简要综述了脑肿瘤干细胞无限增殖、自我更新、多分化潜能的生物学特性,脑肿瘤干细胞的起源以及与脑肿瘤相关机制方面的研究进展,从而为今后脑肿瘤早期诊断、治疗以及以此为靶标的药物开发提供新的思路和方向。  相似文献   

5.
正胶质母细胞瘤(glioblastoma)是一种恶性程度最高的原发性脑肿瘤.由于肿瘤生长快、侵袭性强,常规手术、放疗、化疗等治疗后复发率极高,预后差,绝大多数患者生存期中位数低于两年[1].胶质母细胞瘤的成因复杂,最新研究显示胶质瘤干细胞(glioblastoma stem cells, GSCs)可能在其中发挥了关键作用.胶质瘤干细胞是一群具备无限增殖、自我更新和多向分化等类干细胞潜能的细胞,不仅参与促进肿瘤血管生成,而且能够抵抗放化疗的杀瘤作用[2].以胶质瘤干细胞为  相似文献   

6.
目的:通过放射性核素~(99m)Tc标记BmK CT多肽制备靶向胶质瘤的显像剂,探讨~(99m)?Tc-BmK CT用于胶质瘤显像的可行性。方法:采用BmK CT多肽游离的氨基与DTPA酸酐反应得到BmK CT-DTPA,经99m Tc标记后通过柱层析分离纯化制备~(99m)?Tc-BmK CT。测定标记物在PBS溶液和血清中不同时间点放射性化学纯度,评价BmK CT-~(99m)?Tc体外稳定性。新西兰白兔耳缘静脉注射~(99m)Tc-BmK CT进行SPECT显像,观察不同时间点体内的放射性分布。皮下胶质瘤裸鼠经尾静脉注射~(99m)Tc-BmK CT,观察不同时间点肿瘤的摄取情况;注射后4 h处死裸鼠,分离肿瘤和主要器官进行离体SPECT显像,并用勾画感兴趣区法分析相对放射性计数。结果:~(99m)Tc标记BmK CT多肽标记率大于80%,经柱层析分离纯化后放射性化学纯度大于99%。标记物在PBS和血清稳定性良好,6 h内放射性化学纯度均大于95%,12 h内放射性化学纯度大于90%。正常白兔SPECT显像表明~(99m)Tc-BmK CT主要浓聚在肝脏、脾脏和肾脏,软组织持续显影微弱,甲状腺区及胃肠未见核素浓聚;显像剂主要通过泌尿系统排泄,24 h肾脏与肝脏显影接近。胶质瘤裸鼠SPECT显像表明,注射后4 h肿瘤显像清楚,ROI分析结果显示肿瘤/肌肉比4.26±0.25,标记物在肿瘤内代谢缓慢,8 h肿瘤部位仍有较高摄取。结论:本研究成功制备了~(99m)Tc标记BmK CT多肽,标记物主要被肝、脾和肾摄取,经泌尿系统排泄;~(99m)Tc-BmK CT能够在皮下胶质瘤中浓聚,注射后4 h肿瘤显影清晰,瘤内代谢缓慢,有潜力成为一种新型胶质瘤分子探针。  相似文献   

7.
量子点在生物学中的研究进展   总被引:7,自引:1,他引:6  
量子点作为一种新型的荧光标记物近年来已在生物学中获得广泛应用。本文总结了量子点的主要光学特性,其中包括荧光激发和发射光谱特性、量子产额、光漂白特性和荧光寿命等。重点综述了量子点在细胞标记、活体和组织成像、组合标记和光动力学治疗等生物学中的应用及其最新研究进展。同时讨论了量子点在应用中可能存在的细胞毒性等主要问题,最后对量子点在生物学中的应用前景作了展望。  相似文献   

8.
张彩勤  张海  赵勇  毛峰峰  白冰  师长宏 《中国实验动物学报》2014,(2):17-19,56,I0003,I0004
目的评估近红外荧光染料IR-783在犬自发性肿瘤中的特异性成像。方法将IR-783染料(5μmol/kg)腹腔注射荷瘤裸鼠,通过活体成像仪检测IR-783的代谢周期,在此基础上,将IR-783染料(1.5μmol/kg)通过后肢静脉注射入自发肿瘤犬体内,5 d后手术切除肿瘤组织,分别进行荧光成像、组织切片HE染色、冰冻切片荧光观察。结果 IR-783染料注射荷瘤裸鼠后可以在肿瘤部位检测到特异性荧光,连续观察8 d,仍有较强的荧光。IR-783注射自发肿瘤犬5 d后,可在肿瘤组织中检测到特异性荧光。结论近红外荧光染料IR-783能够被肿瘤组织特异性吸收,可用于犬自发性肿瘤的特异性诊断,具有重要的临床应用前景。  相似文献   

9.
目的:探讨神经导航系统辅助下经胼胝体-穹窿间入路手术切除丘脑胶质瘤的临床应用价值。方法:选择2016年2月至2018年9月我院收治的丘脑胶质瘤患者60例为研究对象,以其中采用神经导航系统辅助下的经胼胝体-穹隆间入路显微切除丘脑胶质瘤的30例患者作为实验组,另外30例采用常规手术切除的患者作为对照组。分析和比较两组手术情况、治疗效果及并发症的发生情况。结果:治疗后,实验组手术时间、住院时间均比对照组明显缩短,术中出血量及术中引流量显著少于对照组(均P0.05);实验组肿瘤全切除率高于对照组,次全切除率及部分切除率均低于对照组(P0.05);实验组并发症发生率(20.0%)显著低于对照组(53.3%)(P0.05)。结论:与常规手术相比,神经导航系统辅助下经胼胝体-穹窿间入路切除丘脑胶质瘤能显著缩短手术时间,减少术中出血量及术后引流量,显著提高丘脑肿瘤全切除率,并降低术后并发症的发生率。  相似文献   

10.
为了探讨共刺激分子B7-H7蛋白在脑胶质瘤组织中的表达及与肿瘤发生发展及预后的关系。本研究选取我院病理科收集的100例脑胶质瘤组织作为脑胶质瘤组、40例因外伤等原因进行脑部手术切除的脑组织作为对照组,收集时间为2011年3月至2013年5月,采用免疫组化染色检测两组标本中的B7-H7蛋白表达情况,并分析其与患者临床病理特征、预后的关系。结果显示,脑胶质瘤组织中的B7-H7蛋白阳性表达率(69.00%)显著高于对照组(5.00%)(p0.05);脑胶质瘤组织中的B7-H7蛋白阳性表达与患者肿瘤分级具有显著相关性,随着肿瘤分级增高,阳性表达率增高(p0.05);脑胶质瘤组织中的B7-H7蛋白阳性表达与患者的年龄、性别、病理学类型无关(p0.05);B7-H7蛋白阳性表达的胶质瘤患者的3年生存率(27.87%)低于阴性表达患者(44.83%),但差异无统计学意义(p0.05);B7-H7蛋白阳性表达的胶质瘤患者的生存时间(20.0个月)低于阴性表达患者(28.0个月)(Log Rank(Mantel-Cox)=3.829,p0.05)。本研究表明,B7-H7蛋白在脑胶质瘤组织中表达上调,并且与肿瘤分级、不良预后显著相关。  相似文献   

11.
Water-soluble quantum dots for biomedical applications   总被引:6,自引:0,他引:6  
Semiconductor nanocrystals are 1-10nm inorganic particles with unique size-dependent optical and electrical properties due to quantum confinement (so they are also called quantum dots). Quantum dots are new types of fluorescent materials for biological labeling with high quantum efficiency, long-term photostability, narrow emission, and continuous absorption spectra. Here, we discuss the recent development in making water-soluble quantum dots and related cytotoxicity for biomedical applications.  相似文献   

12.
Quantum dots are semiconducting nanoparticles that can be prepared with interesting optical properties. The fluorescent properties of quantum dots are one of the key advantages for their use as optical labels for biorecognition events and biocatalytic processes. We have prepared semiconductor quantum dots conjugated with Nile Blue (NB), and demonstrate that NB-functionalized quantum dots can act as versatile probes to analyze different biocatalyzed transformations, and can be used for the quantitative detection of NADPH as well as NADH. This approach provides a new path for the optical detection of NAD(P)H and for the quantitative analysis of NAD(P)(+)-dependent biotransformations.  相似文献   

13.
量子点是近几年发展起来的新型纳米材料,虽然研究起步较晚,但因其独特的电学和光学性质而成为人们关注的热点,在生物医学等多个领域有突破性的研究进展。本文主要介绍量子点的性质、制备方法及其在生物医学中的应用进展和存在的问题。  相似文献   

14.

Background

The current therapy of malignant gliomas is based on surgical resection, radio-chemotherapy and chemotherapy. Recent retrospective case-series have highlighted the significance of the extent of resection as a prognostic factor predicting the course of the disease. Complete resection in low-grade gliomas that show no MRI-enhanced images are especially difficult. The aim in this study was to develop a robust, specific, new fluorescent probe for glioma cells that is easy to apply to live tumor biopsies and could identify tumor cells from normal brain cells at all levels of magnification.

Methodology/Principal Findings

In this investigation we employed brightly fluorescent, photostable quantum dots (QDs) to specifically target epidermal growth factor receptor (EGFR) that is upregulated in many gliomas. Living glioma and normal cells or tissue biopsies were incubated with QDs coupled to EGF and/or monoclonal antibodies against EGFR for 30 minutes, washed and imaged. The data include results from cell-culture, animal model and ex vivo human tumor biopsies of both low-grade and high-grade gliomas and show high probe specificity. Tumor cells could be visualized from the macroscopic to single cell level with contrast ratios as high as 1000: 1 compared to normal brain tissue.

Conclusions/Significance

The ability of the targeted probes to clearly distinguish tumor cells in low-grade tumor biopsies, where no enhanced MRI image was obtained, demonstrates the great potential of the method. We propose that future application of specifically targeted fluorescent particles during surgery could allow intraoperative guidance for the removal of residual tumor cells from the resection cavity and thus increase patient survival.  相似文献   

15.
Noninvasive imaging of quantum dots in mice   总被引:36,自引:0,他引:36  
Quantum dots having four different surface coatings were tested for use in in vivo imaging. Localization was successfully monitored by fluorescence imaging of living animals, by necropsy, by frozen tissue sections for optical microscopy, and by electron microscopy, on scales ranging from centimeters to nanometers, using only quantum dots for detection. Circulating half-lives were found to be less than 12 min for amphiphilic poly(acrylic acid), short-chain (750 Da) methoxy-PEG or long-chain (3400 Da) carboxy-PEG quantum dots, but approximately 70 min for long-chain (5000 Da) methoxy-PEG quantum dots. Surface coatings also determined the in vivo localization of the quantum dots. Long-term experiments demonstrated that these quantum dots remain fluorescent after at least four months in vivo.  相似文献   

16.
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most recurrent and malignant astrocytic glioma found in adults. Biologically, GBMs are highly aggressive tumors that often show diffuse infiltration of the brain parenchyma, making complete surgical resection difficult. GBM is not curable with surgery alone because tumor cells typically invade the surrounding brain, rendering complete resection unsafe. Consequently, present-day therapy for malignant glioma remains a great challenge. The location of the invasive tumor cells presents several barriers to therapeutic delivery. The blood–brain barrier regulates the trafficking of molecules to and from the brain. While high-grade brain tumors contain some “leakiness” in their neovasculature, the mechanisms of GBM onset and progression remain largely unknown. Recent advances in the understanding of the signaling pathways that underlie GBM pathogenesis have led to the development of new therapeutic approaches targeting multiple oncogenic signaling aberrations associated with the GBM. Among these, drug delivery nanosystems have been produced to target therapeutic agents and improve their biodistribution and therapeutic index in the tumor. These systems mainly include polymer or lipid-based carriers such as liposomes, metal nanoparticles, polymeric nanospheres and nanocapsules, micelles, dendrimers, nanocrystals, and nanogold. Photodynamic therapy (PDT) is a promising treatment for a variety of oncological diseases. PDT is an efficient, simple, and versatile method that is based on a combination of a photosensitive drug and light (generally laser-diode or laser); these factors are separately relatively harmless but when used together in the presence of oxygen molecules, free radicals are produced that initiate a sequence of biological events, including phototoxicity, vascular damage, and immune responses. Photodynamic pathways activate a cascade of activities, including apoptotic and necrotic cell death in both the tumor and the neovasculature, leading to a permanent lesion and destruction of GBM cells that remain in the healthy tissue. Glioblastoma tumors differ at the molecular level. For example, gene amplification epidermal growth factor receptor and its receptor are more highly expressed in primary GBM than in secondary GBM. Despite these distinguishing features, both types of tumors (primary and secondary) arise as a result dysregulation of numerous intracellular signaling pathways and have standard features, such as increased cell proliferation, survival and resistance to apoptosis, and loss of adhesion and migration, and may show a high degree of invasiveness. PDT may promote significant tumor regression and extend the lifetime of patients who experience glioma progression.  相似文献   

17.
人脑胶质瘤是最常见的原发性脑肿瘤,起源于脑部神经胶质细胞,约占所有颅内肿瘤的45%左右,在儿童恶性肿瘤中排第二位。胶质瘤系浸润性生长物,它和正常脑组织没有明显界限,难以完全切除,对放疗化疗不甚敏感,非常容易复发,且手术难以切除或根本不能手术。化学药物和一般抗肿瘤的中药,因血脑屏障等因素的影响,疗效也不理想,因此脑胶质瘤至今仍是全身肿瘤中预后最差的肿瘤之一。人类miR-155是由位于21号染色体的BIC基因外显子3编码的多功能miRNA,在干细胞分化、免疫、炎症、癌症、心血管疾病以及病毒感染的病理生理过程中发挥重要作用,也是联系炎症和癌症的桥梁。miR-155在人胶质瘤中作用机制的研究才刚刚起步,目前miR-155与人胶质瘤的关系的研究已成为研究热点。人胶质瘤中miR-155及其相关调控机制的研究。将更有利于人胶质瘤的早期诊断和基因治疗的发展。本文就miR-155与胶质瘤的研究进展予以综述。  相似文献   

18.
Early detection and evaluation of brain tumors during surgery is crucial for accurate resection. Currently cryosections during surgery are regularly performed. Confocal laser endomicroscopy (CLE) is a novel technique permitting in vivo histologic imaging with miniaturized endoscopic probes at excellent resolution. Aim of the current study was to evaluate CLE for in vivo diagnosis in different types and models of intracranial neoplasia. In vivo histomorphology of healthy brains and two different C6 glioma cell line allografts was evaluated in rats. One cell line expressed EYFP, the other cell line was used for staining with fluorescent dyes (fluorescein, acriflavine, FITC-dextran and Indocyanine green). To evaluate future application in patients, fresh surgical resection specimen of human intracranial tumors (n = 15) were examined (glioblastoma multiforme, meningioma, craniopharyngioma, acoustic neurinoma, brain metastasis, medulloblastoma, epidermoid tumor). Healthy brain tissue adjacent to the samples served as control. CLE yielded high-quality histomorphology of normal brain tissue and tumors. Different fluorescent agents revealed distinct aspects of tissue and cell structure (nuclear pattern, axonal pathways, hemorrhages). CLE discrimination of neoplastic from healthy brain tissue was easy to perform based on tissue and cellular architecture and resemblance with histopathology was excellent. Confocal laser endomicroscopy allows immediate in vivo imaging of normal and neoplastic brain tissue at high resolution. The technology might be transferred to scientific and clinical application in neurosurgery and neuropathology. It may become helpful to screen for tumor free margins and to improve the surgical resection of malignant brain tumors, and opens the door to in vivo molecular imaging of tumors and other neurologic disorders.  相似文献   

19.
This study investigates the feasibility of in vivo quantitative optical coherence tomography (OCT) of human brain tissue during glioma resection surgery in six patients. High‐resolution detection of glioma tissue may allow precise and thorough tumor resection while preserving functional brain areas, and improving overall survival. In this study, in vivo 3D OCT datasets were collected during standard surgical procedure, before and after partial resection of the tumor, both from glioma tissue and normal parenchyma. Subsequently, the attenuation coefficient was extracted from the OCT datasets using an automated and validated algorithm. The cortical measurements yield a mean attenuation coefficient of 3.8 ± 1.2 mm?1 for normal brain tissue and 3.6 ± 1.1 mm?1 for glioma tissue. The subcortical measurements yield a mean attenuation coefficient of 5.7 ± 2.1 and 4.5 ± 1.6 mm?1 for, respectively, normal brain tissue and glioma. Although the results are inconclusive with respect to trends in attenuation coefficient between normal and glioma tissue due to the small sample size, the results are in the range of previously reported values. Therefore, we conclude that the proposed method for quantitative in vivo OCT of human brain tissue is feasible during glioma resection surgery.  相似文献   

20.
The tetraspan membrane protein CD9 is normally expressed in the mature myelin sheath and is believed to suppress the metastatic potential of certain human tumors. In this study we identified CD9 in a variety of brain tumors by immunohistochemical (IHC) and immunoblotting analyses. We examined 96 tumor samples and three glioma cell lines in addition to a murine brain tumor model of transplanted glioma cells in CD9-deficient mice and control mice. CD9 was expressed not only in solid non-neuroepithelial tumors but also in infiltrative malignant neuroepithelial tumors. Among the neuroepithelial tumors, high-grade astrocytic tumors, including glioblastomas and anaplastic astrocytomas, showed higher immunoreactivity than low-grade cerebral astrocytomas. Thus, CD9 expression in astrocytic tumors correlated with their malignancy. In the murine brain tumor model, transplanted glioma cells were shown to grow and spread through myelinated areas irrespective of the presence or absence of CD9 expression in the recipient's brain. These results indicate that the CD9 expression of astrocytic tumors plays a significant role in the malignancy independent of CD9 expression in the surrounding tissue. This might be explained by the observation that the CD9 molecule is associated with a mitogenic factor, membrane-anchored heparin-binding epidermal growth factor, which is known to be upregulated in malignant gliomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号