首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的:建立高效液相色谱法同时测定人参皂苷Rb1、Rc、Rd、Rg3、CK和Rh2的方法.方法:采用ODSC18(4.6 mm×150 mm)色谱柱,流动相乙腈-0.05%磷酸水,梯度洗脱,流速1 Ml/min,检测波长203 nm,柱温35 ℃.结果:人参皂苷Rb1、Rc、Rd、Rg3、CK和Rh2分离效果良好,线性关...  相似文献   

2.
西洋参总皂苷经β-糖苷酶催化水解,采用HPLC检测分析确定西洋参总皂苷中的主要原人参二醇型皂苷Rb1、Rd、Rc和Rb2已经完全被水解。水解产物通过反复硅胶柱层析和反向硅胶柱层析分离纯化得到7个皂苷,通过NMR谱图分析分别鉴定为人参皂苷compound K(1)、人参皂苷Mc(2)、人参皂苷Rg1(3)、人参皂苷Rg2(4)、人参皂苷Re(5)、人参皂苷F1(6)和拟人参皂苷F11(7)。β-糖苷酶催化西洋参总皂苷水解实验表明,西洋参中原人参二醇型皂苷的水解产物是人参皂苷compound K和人参皂苷Mc。  相似文献   

3.
人参皂苷是人参中的主要活性成分。人参皂苷中含量较高的主要成分如Rb1、Rb2、Rc、Rd、Rg1和Re均是在人参皂苷的苷元原人参二醇(APPD)或苷元原人参三醇(APPT)上加上不同数量的葡萄糖基、阿拉伯糖基、木糖基或鼠李糖基等糖基形成的。这些主要人参皂苷脱去部分或全部的糖基的产物具有更强的生物活性及更好的人体吸收率。去除糖基的产物如Rg3、Rh2、化合物K(C-K)、F2、Rh1、Rg1、APPD、APPT在天然人参中不存在或含量极低,因此也被称为稀有人参皂苷。稀有人参皂苷可以通过糖苷酶水解主要人参皂苷获得。已报道的具备人参皂苷水解活力的糖苷酶有β-葡萄糖苷酶、α-L-阿拉伯吡喃糖苷酶、α-L-阿拉伯呋喃糖苷酶、β-半乳糖苷酶及β-木糖苷酶。我们简要综述近5年来糖苷酶用于制备稀有人参皂苷的研究进展。  相似文献   

4.
人参皂苷与生态因子的相关性   总被引:5,自引:0,他引:5  
环境条件影响中药材活性成分的形成和积累.利用各种数学统计分析方法探讨影响人参皂苷积累的生态因子,提高人参品质.人参样品采自人参道地产区(主产区)吉林、辽宁、黑龙江三省5年生栽培人参,同时采集采样点处的土壤样品.超高效液相(UPLC)色谱法分析了不同产区9种人参皂苷(Rg1、Re、Rf、Rg2、Rb1、Rc、Rb2、Rb3、Rd)的含量;利用“中药材产地适宜性分析地理信息系统”的生态因子空间数据库,获得采样区包括温度、水分、光照等10个生态因子数据;按土壤理化性质常规方法测定土壤样品中的有效硼、有效铁等微量元素和速效氮、速效钾等有效养分.对人参有效成分含量与土壤养分进行典型相关性分析发现,土壤中的有效硼、有效铁、速效氮与人参皂苷含量呈显著正相关,即适当提高土壤中有效硼、有效铁和速效氮的含量可以促进人参皂苷成分的积累,土壤水分与所测人参皂苷含量(Rb3除外)呈显著正相关,速效磷(P)、pH、速效锌(Zn)与各人参皂苷含量呈弱相关;人参皂苷与气候因子相关分析表明,温度(年活动积温、年平均气温、7月最高气温、7月平均气温、1月最低气温、1月平均气温)与人参皂苷含量呈显著负相关,其中与药典中人参含量测定项下的人参皂苷Rg1、Re、Rb1负相关尤为显著(r>0.6),说明在一定温度范围内,人参皂苷是随着温度的降低而升高的,即适当低温有利于人参皂苷有效成分的积累;海拔与人参皂苷Rc、Rb2、Rb3含量呈显著正相关(r>0.6),即相对较高的海拔可以促进这3种成分的积累;而年均降水量、年相对湿度和年均日照时数与人参皂苷相关不显著.通过主成分分析(PCA)、典型相关分析、排序等统计方法,考察不同产地样品中人参皂苷含量与生态因子间的相关性,研究结果揭示了温度在人参的主要活性成分-皂苷类形成中起决定性作用,在一定的温度范围内,温度越低越有利于人参皂苷的积累;阐明了土壤中的有效硼、有效铁、速效氮与人参皂苷含量成正相关.研究结果提示在人参实践生产中可以通过适当低温处理,增施硼、铁、氮肥等农艺措施来调控人参皂苷含量.  相似文献   

5.
目前已发现30余种人参皂苷单体,不同的人参皂苷单体的药理作用及机制各异。本实验通过研究人参皂苷单体Rg1、Rb1和Re对K562细胞增殖的影响,探讨其抗肿瘤作用及机制。取对数生长期K562细胞,分为阴性对照组、不同浓度的Rg1组、Rb1组、Re组,培养24h、48h、72h,以噻唑蓝(MTT)比色法和台盼蓝活细胞计数法测定不同浓度的Rg1、Rb1、  相似文献   

6.
建立超高效液相色谱串联三重四级杆质谱法(UPLC-MS/MS)同时测定西洋参中8种人参皂苷类成分(人参皂苷Rb1、人参皂苷Rb2、人参皂苷Rb3、人参皂苷Re、人参皂苷Rc、人参皂苷Rd、人参皂苷Rg1和拟人参皂苷F11)的定量分析方法。采用Waters Acquity BEH C18柱(100 mm×2.1 mm,1.7μm)色谱柱,流动相为0.1%甲酸水(A)-乙腈(B),梯度洗脱,流速0.25 m L/min,柱温35℃。电喷雾电离源(ESI),采用多反应检测模式(MRM),以保留时间及定性离子对之间的相对丰度定性,以定量离子对峰面积进行定量。定量分析西洋参中8种人参皂苷类成分在考察的浓度范围内呈良好的线性关系(r0.99);回收率和RSD分别在95.65%~103.34%,0.38%~4.33%。本研究所建立的同时测定西洋参中8种皂苷类成分的UPLC-MS/MS定量分析方法简便、快捷、准确,可为综合评价西洋参的质量提供参考。  相似文献   

7.
人参发根的诱导及其适宜培养条件的研究   总被引:23,自引:0,他引:23  
利用发根农杆菌A4菌株在人参根外植体上直接诱导产生发根。在1/2MS固体培养基上建立起发根离体培养系,经连续多代的培养,发根仍保持旺盛生长状态。PCR扩增结果表明,发根农杆菌RI质粒的rolC基因已在人参发根基因组中整合并得到表达。液体培养基中发根生长速度约为固体培养的2倍。经对发根中人参皂苷含量及比生长速率的测定,筛选出高产发根系R9923。利用HPLC法测定了R9923发根系中单体皂苷Rg1、Re、Rf、Rb1、Rc、Rb2和Rd的含量,人参总皂苷含量达15.2mg/g。确定1/2MS培养液(30g/L蔗糖)、摇床转速110r/min、每2周更换一次培养液、继代培养时间4周,为人参发根生长适宜条件。探讨了培养容积、发根初始接种量以及分级放大培养工艺对发根大规模生产过程中生物产量和皂苷含量的影响。  相似文献   

8.
用HPLC法研究不同提取方法对人参单体皂甙的提取效果   总被引:1,自引:0,他引:1  
本文采用MPG-ODS色谱柱,以醋酸铵作HPLC流动相的改性荆在15 min以内较好地分离出单体皂甙Rg_2、Rb_1、Rc、Rd、Rg_1、Re等,首次比较了化学上醇提取方法和食用时水提取方法对单体皂甙及总皂甙提取效果的不同,结果表明,食用水对Rg组类皂甙的提取量高于Rb组,这将为人参的药理学研究及临床食用提供科学依据。  相似文献   

9.
不同产地西洋参皂甙成分的HPLC分析   总被引:4,自引:1,他引:3  
以西洋参的主要皂甙成分人参皂甙Re和Rb1为标准对照品 ,建立西洋参药材的HPLC定量分析技术 ,并参考人参皂甙Rc,Rd及Rg2 的相对峰面积进行主成分分析。色谱条件为 :C18柱 (5 μm ,3.9× 15 0mm) ,乙腈 :水流动相 ,二元梯度洗脱 ,检测波长 2 0 3nm。结果表明 ,就皂甙成分的组成与含量而言通过人参皂甙Re和Rb1的含量测定和皂甙的主成分分析 ,不同产地的西洋参药材皂甙成分存在一定的差别。吉林省靖宇县产的西洋参与进口品最为接近。  相似文献   

10.
为了解绵萆薢(Dioscorea spongiosa)的化学成分,从其70%乙醇水溶液提取物中分离鉴定了8个化合物,经理化性质和波谱数据分析分别鉴定为:20(S)-人参皂苷Rh1(1)、人参皂苷Rg1(2)、人参皂苷Re(3)、三七皂苷R1(4)、人参皂苷Rd(5)、人参皂苷Rb1(6)、常青藤皂苷元3-O-α-L-吡喃阿拉伯糖苷(7)和木通皂苷D(8)。化合物1、2、3、5和6为首次从该种植物中分离得到,化合物7和8为首次从薯蓣属植物中分离得到。  相似文献   

11.
Understory light and root ginsenosides in forest-grown Panax quinquefolius   总被引:2,自引:0,他引:2  
The objective of this study was to determine the relationship between light levels in the understory of a broadleaf forest and the content of six ginsenosides (Rg(1), Re, Rb(1), Rc, Rb(2,) and Rd) in 1- and 2-year-old American ginseng (Panax quinquefolius L.) roots. Our results revealed that ginsenoside contents in 1- and 2 year-old roots collected in September were significantly related to direct and total light levels, and duration of sunflecks. At this time, the effect of light levels accounted for up to 48 and 62% of the variation in ginsenoside contents of 1- and 2-year-old American ginseng roots. Also, red (R) and far red (FR) light, and the R:FR ratio significantly affected Rd, Rc, and Rg(1) contents in 2-year-old roots, accounting for up to 40% of the variation in ginsenoside contents.  相似文献   

12.
Ginsenosides are the major constituent that is responsible for the health effects of American ginseng. The ginsenoside profile of wild American ginseng is ultimately the result of germplasm, climate, geography, vegetation species, water, and soil conditions. This is the first report to address the ginsenoside profile of wild American ginseng grown in Tennessee (TN), the third leading state for production of wild American ginseng. In the present study, ten major ginsenosides in wild American ginseng roots grown in TN, including Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, and Rg3, were determined simultaneously. The chemotypic differences among TN wild ginseng, cultivated American ginseng, and Asian ginseng were assessed based on the widely used markers of ginsenoside profiling, including the top three ginsenosides, ratios of PPD/PPT, Rg1/Rb1, Rg1/Re, and Rb2/Rc. Our findings showed marked variation in ginsenoside profile for TN wild ginseng populations. Nevertheless, TN wild ginseng has significant higher ginsenoside content and more ginsenoside diversity than the cultivated ginseng. The total ginsenoside content in TN wild ginseng, as well as ginsenosides Rg1 and Re, increases with the age of the roots. Marked chemotypic differences between TN wild ginseng and cultivated American ginseng were observed based on the chemotypic markers. Surprisingly, we found that TN wild ginseng is close to Asian ginseng with regard to these characteristics in chemical composition. This study verified an accessible method to scientifically elucidate the difference in chemical constituents to distinguish wild from the cultivated American ginseng. This work is critical for the ecological and biological assessments of wild American ginseng so as to facilitate long‐term sustainability of the wild population.  相似文献   

13.
To increase the contents of medicinally effective ginsenosides, we used high-temperature and high-pressure thermal processing of ginseng by exposing it to microwave irradiation. To determine the anti-melanoma effect, the malignant melanoma SK-MEL-2 cell line was treated with an extract of microwave-irradiated ginseng. Microwave irradiation caused changes in the ginsenoside contents: the amounts of ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd were disappeared, while those of less polar ginsenosides, such as Rg3, Rg5, and Rk1, were increased. In particular, the contents of Rk1 and Rg5 markedly increased. Melanoma cells treated with the microwave-irradiated ginseng extract showed markedly increased cell death. The results indicate that the microwave-irradiated ginseng extract induced melanoma cell death via the apoptotic pathway and that the cytotoxic effect of the microwave-irradiated ginseng extract is attributable to the increased contents of specific ginsenosides.  相似文献   

14.
The effects of methyl jasmonate (MJ) elicitation on the cell growth and accumulation of ginsenoside in 5-l bioreactor suspension cultures of Panax ginseng were investigated. Ginsenoside accumulation was enhanced by elicitation by MJ (in the range 50–400 M); however, fresh weight, dry weight and growth ratio of the cells was strongly inhibited by increasing MJ concentration. The highest ginsenoside yield was obtained at 200 M MJ. In the second experiment, 200 M MJ was added on day 15 during the cultivation. The ginsenoside, Rb group, and Rg group ginsenoside content increased 2.9, 3.7, and 1.6 times, respectively, after 8 days of MJ treatment. Rb group gisnsenosides accumulated more than Rg group ginsenosides. Among Rb group ginsenosides, Rb1 content increased significantly by four times but the contents of Rb2, Rc and Rd increased only slightly. Among Rg group ginsenosides, Rg1 and Re showed 2.3-fold and 3.0-fold increments, respectively, whereas there was only a slight increment in Rf group ginsenosides. These results suggest that MJ elicitation is beneficial for ginsenoside production using 5-l bioreactor cell suspension cultures.  相似文献   

15.
云南栽培西洋参皂甙的高压液相色谱定量分析   总被引:6,自引:0,他引:6  
采用N-18ODS柱,以CH_3CN:H_2O(31:69 v/v)中加入50mM KH_2PO_4和CH_3CN:H_2O:H_3PO_4(20:80:0.5 v/v)为流动相,在202 nm紫外吸收波长检测下,测定了云南丽江引种栽培的西洋参中丙二酸人参皂甙(malonyl ginsenoside)Rb_1、Rb_2、Rc、人参皂甙(ginsenosidc)Rb_1、Rb_2、Rc、Rd、Ro和Rc、Rgl等10种主要皂甙的含量,讨论了不同的栽培年代、采收季节、地下部位以及商品等级中皂甙含量的变化,对该地区西洋参的生产提出了建议。  相似文献   

16.
Ginsenosides, major active ingredients of Panax ginseng, are known to regulate the excitatory ligand-gated ion channel activity. Recent reports showed that ginsenosides attenuate nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides also affect the inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human glycine alpha1 receptor channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. Treatment of ginsenoside Rf enhances glycine-induced inward peak current (IGly) with dose dependent and reversible manner but ginsenoside Rf itself did not elicit membrane currents. The half-stimulatory concentrations (EC50) of ginsenoside Rf was 49.8 +/- 8.9 microM. Glycine receptor antagonist strychnine completely blocked the inward current elicited by glycine plus ginsenoside Rf. Cl- channel blocker 4,4'-disothiocyanostilbene-2,2'-disulfonic acid (DIDS) also blocked the inward current elicited by glycine plus ginsenoside Rf. We also tested the effect of eight individual ginsenosides (i.e., Rb1, Rb2, Rc, Rd, Re, Rg1, Rg2, and Ro) in addition to ginsenoside Rf. We found that five of them significantly enhanced the inward current induced by glycine with the following order of potency: Rb1 > Rb2 > Rg2 > or = Rc > Rf > Rg1 > Re. These results indicate that ginsenosides might regulate gylcine receptor expressed in Xenopus oocytes and this regulation might be one of the pharmacological actions of Panax ginseng.  相似文献   

17.
为探究人与大鼠肠道菌群对三七水煎液中三醇型人参皂苷Rg1、Re及二醇型人参皂苷Rb1、Rd体外代谢的差异性及发现其代谢产物原人参二醇PPD与原人参三醇PPT,实验利用UPLC方法测定三七水煎液分别与人、大鼠肠道菌群在厌氧条件下共培养24h后的孵育液中4种皂苷的含量及代谢产物PPD与PPT的含量。结果表明三七中含有三醇型人参皂苷Rg19.4500mg/g、Re1.8872mg/g,二醇型人参皂苷Rb18.5816mg/g、Rd1.9456mg/g。与人源肠道菌共培养后,三七中含有的二醇型、三醇型人参皂苷含量显著降低,重要的是,在培养液中检测到代谢产物PPD和PPT的存在,含量分别为0.2136mg/g及0.0344mg/g,与大鼠肠道菌共培养后,三七中含有的二醇型皂苷含量有轻微降低,而三醇型皂苷含量未见明显变化,但有少量PPT(0.0184mg/g)的生成。由此可见:在体外条件下,三七水煎液中人参皂苷会被人肠道菌群降解生成代谢产物PPD和PPT,而大鼠肠道菌群的降解产物却仅有PPT生成,二者存在种属差异。  相似文献   

18.
Schlag EM  McIntosh MS 《Phytochemistry》2006,67(14):1510-1519
The contents of five ginsenosides (Rg1, Re, Rb1, Rc and Rd) were measured in American ginseng roots collected from 10 populations grown in Maryland. Ginsenoside contents and compositions varied significantly among populations and protopanaxatriol (Rg1 and Re) ginsenosides were inversely correlated within root samples and among populations. The most abundant ginsenoside within a root and by population was either Rg1 or Re, followed by Rb1. Ginseng populations surveyed grouped into two chemotypes based on the relative compositions of Rg1 and Re. Four populations, including the control population in which plants were grown from TN and WI seed sources, contained roots with the recognized chemotype for American ginseng of low Rg1 composition relative to Re. The remaining 6 populations possessed roots with a distinctive chemotype of high relative Rg1 to Re compositions. Chemotype did not vary by production type (wild versus cultivated) and roots within a population rarely exhibited chemotypes different from the overall population chemotype. These results provide support for recent evidence that relative Rg1 to Re ginsenoside contents in American ginseng roots vary by region and that these differences are likely influenced more by genotype than environmental factors. Because the physiological and medicinal effects of different ginsenosides differ and can even be oppositional, our findings indicate the need for fingerprinting ginseng samples for regulation and recommended usage. Also, the High Rg1/Low Re chemotype discovered in MD could potentially be used therapeutically for coronary health based on recent evidence of the positive effects of Rg1 on vascular growth.  相似文献   

19.
Most of the known pharmacological effects of Panax ginseng on the central nervous system are due to its major components - ginsenosides. Although the antioxidant ability of ginseng root has already been established, this activity has never been evaluated for isolated ginsenosides on astrocytes. The activity of protopanaxadiols Rb(1), Rb(2), Rc and Rd, and protopanaxatriols Re and Rg(1) was evaluated in vitro on astrocytes primary culture by means of an oxidative stress model with H(2)O(2). The viability of astrocytes was determined by the MTT reduction assay and by the LDH release into the incubation medium. The effects on the antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidases (GPx) and glutathione reductase (GR) and on the intracellular reactive oxygen species (ROS) formation were also investigated. Exposure of astrocytes to H(2)O(2) decreased cell viability as well as the antioxidant enzymes activity and increased ROS formation. Oxidative stress produced significant cell death that was reduced by previous treatment with the tested ginsenosides. Ginsenosides Rb(1), Rb(2), Re and Rg(1) were effective in reducing astrocytic death, while Rb(1), Rb(2), Rd, Re and Rg(1) decreased ROS formation, ginsenoside Re being the most active. Ginsenosides from P. ginseng induce neuroprotection mainly through activation of antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号