首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多能干细胞,如胚胎干细胞(embryonic stem cells,ESCs)、诱导多能干细胞(induced pluripotent stem cells,iPSCs)和成体干细胞(adultstemcells,ASCs),是一类具有巨大潜能的独特细胞。猪作为试验材料,在遗传、代谢、生理生化及基因序列等方面较小鼠更接近于人类,正逐渐成为人类异种移植和再生医学研究的理想生物学模型。然而,目前对猪多能干细胞种类、来源、特征及机制的有限认识直接阻碍了其相关应用。该文将分别对猪ASCs的研究现状、猪类ESCs的分离培养、猪iPSCs的研究进展、多能干细胞间的联系和展望进行论述,以期为从事该领域研究的科研人员提供参考。  相似文献   

2.
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.  相似文献   

3.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   

4.
In recent times, the epigenetic study of pluripotency based on cellular reprogramming techniques led to the creation of induced pluripotent stem cells. It has come to represent the forefront of a new wave of alternative therapeutic approaches in the field of stem cell therapy. Progress in drug development has saved countless lives, but there are numerous intractable diseases where curative treatment cannot be achieved through pharmacological intervention alone. Consequently, there has been an unfortunate rise in incidences of organ failures, degenerative disorders and cancers, hence novel therapeutic interventions are required. Stem cells have unique self-renewal and multilineage differentiation capabilities that could be harnessed for therapeutic purposes. Although a number of mature differentiated cells have been characterized in vitro, few have been demonstrated to function in a physiologically relevant context. Despite fervent levels of enthusiasm in the field, the reality is that other than the employment of haematopoietic stem cells, many other therapies have yet to be thoroughly proven for their therapeutic benefit and safety in application. This review shall focus on a discussion regarding the current status of stem cell therapy, the issues surrounding it and its future prospects with a general background on the regulatory networks underlying pluripotency.  相似文献   

5.
Introduction

(1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory.

Sources of data

We reviewed the literature related to reprogramming, pluripotency and fetal stem cells.

Areas of agreement

(1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both.

Areas of controversy

(1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The “level” of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined.

Growing points

Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling.  相似文献   

6.
《Cell Stem Cell》2020,26(3):377-390.e6
  1. Download : Download high-res image (197KB)
  2. Download : Download full-size image
  相似文献   

7.
Stem cells: is there a future in plastics?   总被引:3,自引:0,他引:3  
The concept that ostensibly tissue-specific stem cells can give rise to cells of heterologous lineages has gained support from studies using purified hematopoietic stem cells and sensitive donor-cell tracking methods. The ability to exploit these findings in clinical settings will probably depend on new insights into the mechanisms by which such stem cells or their progeny migrate to sites of organ damage and differentiate to cell types competent to participate in tissue regeneration.  相似文献   

8.
果蝇干细胞研究进展   总被引:1,自引:0,他引:1  
本文主要介绍了果蝇五种干细胞,包括生殖干细胞、神经干细胞、造血干细胞、小肠干细胞、肾干细胞及其微环境(niche)的组成成份;简述了五种干细胞系统对应的分子标记;最后重点介绍了调控每种干细胞系统的信号通路。  相似文献   

9.
10.
胃癌是仅次于肺癌的第二大致死率癌症,尽管近年来对胃癌研究有了很大进展,但由于缺乏良好的动物模型,对胃癌的发病机理仍然不是很清楚.近年的研究表明,肿瘤组织不是由均一细胞构成的,其中存在一些少量细胞可以自我更新并可以分化为肿瘤组织的其他细胞,这类细胞具有类似成体组织干细胞(tissue stem cells)的特性称之为肿瘤干细胞(cancer stem cells).肿瘤干细胞被认为在肿瘤的生长、转移、复发中发挥着重要作用.有证据表明在胃癌组织中存在胃癌干细胞(gastric cancer stem cells),但是对胃癌干细胞的来源仍然不是十分明确.对肿瘤干细胞的研究有助于癌症的治疗,改变目前药物针对所有癌细胞的治疗策略.  相似文献   

11.
成人中枢神经系统存在着一定量的神经干细胞,其具有两大关键能力;自我更新和多向分化潜能。缺血性脑卒中是一种由于由脑血流的缺失或减少引起的脑动脉闭塞,进而导致脑组织梗死的脑血管疾病。虽然对于脑损伤的药物治疗已经取得了一定的成果,但目前以干细胞为基础的治疗方法仍成为了研究热点。无论是内源性神经干细胞还是外源性神经干细胞移植均可在脑损伤后向远端损伤区迁移并分化成新的神经细胞,从而在中枢神经系统疾病尤其是脑梗死后进行组织修复和功能恢复。因此在这篇综述中,我们主要探讨不同类型的干细胞对脑梗死介导的脑损伤的应用潜能,对比不同类型干细胞对缺血性脑卒中的治疗优缺点。  相似文献   

12.
Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseasesthat defy doctors and researchers around the world. Stem cells can be divided into three main groups:(1) embryonic stem cells;(2) fetal stem cells; and(3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.  相似文献   

13.
14.
Adipose-derived stem cells (ASCs) are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue. Isolated ASCs are typically expanded in monolayer on standard tissue culture plastic with a basal medium containing 10% fetal bovine serum. However, recent data suggest that altering the monolayer expansion conditions by using suspension culture plastic, adding growth factors to the medium, or adjusting the seeding density may affect the self-renewal rate, multipotency, and lineage-specific differentiation potential of the ASCs. We hypothesized that variation in any of these expansion conditions would influence the chondrogenic potential of ASCs. ASCs were isolated from human liposuction waste tissue and expanded through two passages with different tissue culture plastic, feed medium, and cell seeding densities. Once expanded, the cells were cast in an agarose gel and subjected to identical chondrogenic culture conditions for 7 days, at which point cell viability, radiolabel incorporation, and gene expression were measured. High rates of matrix synthesis upon chondrogenic induction were mostly associated with smaller cells, as indicated by cell width and area on tissue culture plastic, and it appears that expansion in a growth factor supplemented medium is important in maintaining this morphology. All end-point measures were highly dependent on the specific monolayer culture conditions. These results support the hypothesis that monolayer culture conditions may "prime" the cells or predispose them towards a specific phenotype and thus underscore the importance of early culture conditions in determining the growth and differentiation potential of ASCs.  相似文献   

15.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

16.
造血干细胞移植已成为治疗白血病、再生障碍性贫血、重症免疫缺陷征、地中海贫血、急性放射病、某些恶性实体瘤和淋巴瘤等造血及免疫系统功能障碍性疾病的成熟技术和重要手段,另外这一技术还被尝试用于治疗艾滋病,已取得积极的效果。但是由于移植需要配型相同的供体,并且过程复杂,使得造血干细胞移植因缺少配型相同的供体来源以及费用昂贵而不能被广泛应用。胚胎干细胞是一种能够在体外保持未分化状态并且能进行无限增殖的细胞,在适合条件下能够分化为体内各种类型的细胞,研究胚胎干细胞分化为造血干细胞,不仅可作为研究动物的早期造血发生的模型,而且可以增加造血干细胞的来源,还可以通过基因剔除、治疗性克隆等方法来解决移植排斥的问题,从而为造血干细胞移植的发展扫除了障碍,因此有着重要的研究价值和应用前景。现对胚胎干细胞体外分化为造血干细胞的诱导方法,诱导过程中的调控机制,并对胚胎干细胞分化为造血干细胞的存在问题和发展前景进行讨论。  相似文献   

17.
Despite the advances in the hematology field, blood transfusion-related iatrogenesis is still a major issue to be considered during such procedures due to blood antigenic incompatibility. This places pluripotent stem cells as a possible ally in the production of more suitable blood products. The present review article aims to provide a comprehensive summary of the state-of-theart concerning the differentiation of both embryonic stem cells and induced pluripotent stem cells to hematopoietic cell lines. Here, we review the most recently published protocols to achieve the production of blood cells for future application in hemotherapy, cancer therapy and basic research.  相似文献   

18.
Over the last years, the microRNA (miRNA) pathway has emerged as a key component of the regulatory network of pluripotency. Although clearly distinct states of pluripotency have been described in vivo and ex vivo, differences in miRNA expression profiles associated with the developmental modulation of pluripotency have not been extensively studied so far. Here, we performed deep sequencing to profile miRNA expression in naive (embryonic stem cell [ESC]) and primed (epiblast stem cell [EpiSC]) pluripotent stem cells derived from mouse embryos of identical genetic background. We developed a graphical representation method allowing the rapid identification of miRNAs with an atypical profile including mirtrons, a small nucleolar RNA (snoRNA)-derived miRNA, and miRNAs whose biogenesis may differ between ESC and EpiSC. Comparison of mature miRNA profiles revealed that ESCs and EpiSCs exhibit very different miRNA signatures with one third of miRNAs being differentially expressed between the two cell types. Notably, differential expression of several clusters, including miR290-295, miR17-92, miR302/367, and a large repetitive cluster on chromosome 2, was observed. Our analysis also showed that differentiation priming of EpiSC compared to ESC is evidenced by changes in miRNA expression. These dynamic changes in miRNAs signature are likely to reflect both redundant and specific roles of miRNAs in the fine-tuning of pluripotency during development.  相似文献   

19.
The haemopoietic stem cell (HSC) has long been regarded as an archetypal, tissue specific, stem cell, capable of completely regenerating haemopoiesis after myeloablation. It has proved relatively easy to harvest HSC, from bone marrow or peripheral blood. In turn, isolation of these cells has allowed therapeutic stem cell transplantation protocols to be developed, that capitalise on their prodigious self renewal and proliferative capabilities. Ex vivo approaches have been described to isolate, genetically manipulateand expand pluripotent stem cell subsets. These techniques have been crucial to the development of gene therapy, and may allow adults to enjoy the potential advantages of cord blood transplantation. Recently, huge conceptual changes have occurred in stem cell biology. In particular, the dogma that, in adults, stem cells are exclusively tissue restricted has been questioned and there is great excitement surrounding the potential plasticity of these cells, with the profound implications that this has, for developing novel cellular therapies. Mesenchymal stem cells, multipotent adult progenitor cells and embryonic stem cells are potential sources of cells for transplantation purposes. These cells may be directed toproduce HSC, in vitro and in the future may be used for therapeutic, or drug development, purposes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Pluripotent stem cells derived from neonatal or adult testes are a useful tool to examine the mechanisms of pluripotency and a resource for cell-based therapies. However, therapies usingthese cells will only benefit males but not females. Recently, female germline stem cells (FGSCs) were discovered in ovaries. Whether FGSCs can be converted into pluripotent stem cells, similar to spermatogonial stem cells, is unknown. Here, we demonstrate that female embryonic stem-like cells (fESLCs) can be generated within 1 month from the stably proliferating FGSCs cultured in embryonic stem cell (ESC) medium, fESLCs exhibit properties similar to those of ESCs in terms of marker expression and differentiation potential. Thus, our findings suggest that generation of patient-specific fESLCs is feasible and provides a foundation for personalized regenerative applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号