首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
蛋白C(Protein C)是一种维生素K依赖性糖蛋白,它在凝血酶或凝血酶-血栓调节蛋白复合物的作用下转变为活化蛋白C,即APC(activated protein C),APC有灭活Va、VIIIa及增加纤溶的活性,因此具有抗凝作用。蛋白S是蛋白C系统的重要组成部分,蛋白C/S缺乏是由编码蛋白C/S的基因突变或多态性引起的常染色体遗传性疾病,易产生深静脉血栓,特点是首次发生血栓的年龄小,血栓发生次数多,且静脉血栓形成易造成肺栓塞,所以当临床上遇到有上述特点的静脉血栓患者时,应进行血浆蛋白C系统检测,近年来随着分子生物技术的发展,对遗传性蛋白C/S基因的基因突变和基因多态性研究进入了一个新的阶段。治疗上无临床症状的PC缺乏症者无需治疗,在术前或分娩前的抗栓治疗中,可输注PC浓缩剂、新鲜血浆、凝血酶原复合物或肝素,血栓形成时需做溶栓治疗。  相似文献   

2.
螺旋藻别藻蓝蛋白的纯化、理化特性与结晶   总被引:1,自引:0,他引:1  
硫酸铵分级沉淀结合多种层析技术,从螺旋藻(SP—Dz)中纯化到电泳纯别藻蓝蛋白(Allophycocyanin,APC),纯度(A650/A280)达4.83。APC在30min内的荧光扫描曲线为直线;30min连续光照其相对荧光强度仍为原来的98%以上,其抗荧光淬灭能力强于同样条件下的藻蓝蛋白(PC)及荧光素TRITC。用悬滴气相扩散法培养获得了APC晶体。  相似文献   

3.
钝顶螺旋藻藻胆蛋白的分离,纯化及其理化特性   总被引:24,自引:0,他引:24  
钝顶螺旋藻(Spirulina Platensis var.nanjingensis)一变异株的水溶性色素精提物,经固体硫酸铵沉淀,羟基磷灰石(HA)和Sephadex G-100柱层析后可分离、纯化出藻蓝蛋白(C-PC)和别藻蛋白(APC)。它们的纯度可分别达到AS 620/A_(277)=4.71;A_(650)/A_(270)=5.62。纯化后的C—PC和APC在聚丙烯酰胺凝胶电泳(PAGE)中仅见一条色带,其最大吸收峰分别在620nm和050nm。经12%的十二烷基硫酸钠—聚丙烯酰胺凝胶电泳(SDS—PAGE),以及高效液相色谱(HPLC)分离,C—PC和APC均可分为α和β两个亚单位。两者的亚单位分子量分别为:C—PC—α,15000;C—PC—β,14500;APC—α,15000;APC—β,13500。依此推算,该藻的C—PC和APC的最小分子量应为29.5kD和28.5kD。经等电电泳法测定,其C—PC和APC的等电点分别在4.8和4.9。氨基酸组成和含量分析结果表明,除色氨酸(Try)未测外,c—PC含有14种氨基酸,APC含有15种氨基酸,两者都缺乏组氨酸(His)和脯氨酸(Pro),C—PC还缺少蛋氨酸(Met)。  相似文献   

4.
应用蛋白截短技术检测APC基因胚系突变   总被引:5,自引:0,他引:5  
建立蛋白截短检测技术,分析家族性腺瘤样息肉病(FAP)发病相关基因APC基因的胚系突变,研究基因突变型与FAP疾病表型的关系。经临床诊断的22例FAP患者及43例散发性大肠癌患者,分别取外周静脉血和正常结肠粘膜组织,常规提取基因组DNA。应用蛋白截短检测技术,分段分析APC基因巨大的第15外显子,对检出截短蛋白的样本进行测序,以确定突变位点及突变性质。22例FAP患者中,5例患者存在APC基因第15外显子的胚系突变,均为碱基缺失造成的移码突变,导致截短蛋白的产生;43例散发性大肠癌患者中未检测到APC基因第15外显子的胚系突变。蛋白截短检测技术是一种高效的基因突变分析技术,适用于大片段基因(如APC基因第15外显子)截短型突变的检测,可作为FAP症状出现前的常规基因诊断技术的一项有效补充。  相似文献   

5.
为了研究鱼腥藻PCC7120(Anabaena sp.PCC7120)中别藻蓝蛋白(APC)α和β亚基(α-APC和β-APC)中藻蓝胆素(PCB)与脱辅基蛋白的生物合成,并在蓝藻体外对这两种色素蛋白PCB—ApcA和PCB-ApcB合成时聚集过程进行分析,通过多种组合的质粒在大肠杆菌体内共同表达进行重组。色素蛋白的吸收和荧光光谱以及Zn电泳表明,在大肠杆菌体内同时得到色素蛋白PCB—ApcA和PCB—ApcB,并且体内重组色素蛋白的细胞荧光光谱显示,色素蛋白以三聚体的形式存在,而破碎细胞后所得上清液所显示的光谱特征为单聚体的特征。  相似文献   

6.
金属硫蛋白融合蛋白的分离纯化   总被引:2,自引:1,他引:1  
采用IPTG诱导新1#菌BL21(DE3)(pET21a-MT)高效表达Balb/C小鼠金属硫蛋白融合蛋白,并采用包涵体分离纯化方法及Sephadex G-75柱层析得到SDS-PAGE电泳为一条带的金属硫蛋白融合蛋白收集液。  相似文献   

7.
簇集蛋白   总被引:3,自引:0,他引:3  
簇集蛋白黄仕和许四宏(卫生部武汉生物制品研究所,武汉430060)赵修竹(同济医科大学免疫学教研室,武汉430030)关键词簇集蛋白簇集蛋白(clusterin)是一种分子量为80kD的异二聚体糖蛋白,曾被命名为血清蛋白-40,40(SP-40,40...  相似文献   

8.
采用新鲜藻丝为原料和分段梯度盐析分离纯化钝顶螺旋藻Sp(NS)-90020的藻蓝蛋白(PC),经羟基磷灰石一次层析,能使提取的PC的纯度大于普遍认可的标准,由于该工艺流程较为简单,适合藻蓝蛋白的大量生产,藻胆蛋白经Sephadex凝胶过滤后的可达电泳纯度标准,经SDS-PAE测得PC,APC的分子量分别约为38.33kD。  相似文献   

9.
Zhu M  Li JS  Tian D  Ma Y  Li NP  Wu RL 《生理学报》2007,59(2):197-203
为了探讨糖原合酶激酶3β(glycogen synthase kinase 3β,GSK3β)和腺瘤性结肠息肉病(adenomatous polyposis coli, APC)蛋白在气道上皮细胞(airway epithelial cells,AECs)损伤和修复中的作用,我们采用机械划线损伤的方法建立体外气道上皮损伤修复模型,采用Western blot、免疫荧光双标共聚焦成像和免疫沉淀的方法观察损伤修复过程中APC蛋白和GSK3β在AECs中表达及分布的动态变化。结果显示:(1)用Western blot方法观察到划线损伤0.5 h后即有GSK3β磷酸化增强(P〈 0.05),6 h达到高峰(P〈0.05),持续到12 h(P〈0.05),24 h开始下降,而GSK3β总量大致保持一致。(2)在免疫荧光双标共聚焦成像实验中,划线损伤0 h组APC蛋白主要表达于胞浆,而划线损伤6 h后APC蛋白主要聚集于损伤前沿区的迁移活跃细胞。(3)免疫共沉淀的实验结果显示,划线损伤0 h时GSK3B和APC蛋白能共同沉淀,但在划线损伤6 h之后,两者发生了分离。以上结果表明:划线损伤后AECs立即启动修复过程,此时GSK3B的活性被抑制,促使APC蛋白游离出来;游离出来的APC蛋白则与微管正极结合,增加了微管的稳定性,从而调节细胞骨架运动,促进气道上皮的损伤修复。  相似文献   

10.
肿瘤抑制蛋白APC(adenomatous polyposis coli)是一种多功能蛋白,它不仅参与Wnt信号途径,调节β-链蛋白(β-catenin)的降解,同时也调节细胞骨架运动,影响细胞的迁移、黏合和分裂等。APC和其他相关因子之间的平衡对于肠上皮细胞的正常发育是十分重要的,这种平衡一旦被打破可能导致结肠功能的破坏及癌症的发生。该文着重介绍APC蛋白的结构及对细胞生长的影响。  相似文献   

11.
Zinc is an essential trace element for human nutrition and is critical to the structure, stability, and function of many proteins. Zinc ions were shown to enhance activation of the intrinsic pathway of coagulation but down-regulate the extrinsic pathway of coagulation. The protein C pathway plays a key role in blood coagulation and inflammation. At present there is no information on whether zinc modulates the protein C pathway. In the present study we found that Zn2+ enhanced the binding of protein C/activated protein C (APC) to endothelial cell protein C receptor (EPCR) on endothelial cells. Binding kinetics revealed that Zn2+ increased the binding affinities of protein C/APC to EPCR. Equilibrium dialysis with 65Zn2+ revealed that Zn2+ bound to the Gla domain as well as sites outside of the Gla domain of protein C/APC. Intrinsic fluorescence measurements suggested that Zn2+ binding induces conformational changes in protein C/APC. Zn2+ binding to APC inhibited the amidolytic activity of APC, but the inhibition was reversed by Ca2+. Zn2+ increased the rate of APC generation on endothelial cells in the presence of physiological concentrations of Ca2+ but did not further enhance increased APC generation obtained in the presence of physiological concentrations of Mg2+ with Ca2+. Zn2+ had no effect on the anticoagulant activity of APC. Zn2+ enhanced APC-mediated activation of protease activated receptor 1 and p44/42 MAPK. Overall, our data show that Zn2+ binds to protein C/APC, which results in conformational changes in protein C/APC that favor their binding to EPCR.  相似文献   

12.
Activated protein C (APC) down-regulates thrombin formation through proteolytic inactivation of factor Va (FVa) by cleavage at Arg506 and Arg306 and of factor VIIIa (FVIIIa) by cleavage at Arg336 and Arg562. To study substrate recognition by APC, active site-mutated APC (APC(S360A)) was used, which lacks proteolytic activity but exhibits anticoagulant activity. Experiments in model systems and in plasma show that APC(S360A), and not its zymogen protein C(S360A), expresses anticoagulant activities by competing with activated coagulation factors X and IX for binding to FVa and FVIIIa, respectively. APC(S360A) bound to FVa with a KD of 0.11 ± 0.05 nm and competed with active site-labeled Oregon Green activated coagulation factor X for binding to FVa. The binding of APC(S360A) to FVa was not affected by protein S but was inhibited by prothrombin. APC(S360A) binding to FVa was critically dependent upon the presence of Arg506 and not Arg306 and additionally required an active site accessible to substrates. Inhibition of FVIIIa activity by APC(S360A) was >100-fold less efficient than inhibition of FVa. Our results show that despite exosite interactions near the Arg506 cleavage site, binding of APC(S360A) to FVa is almost completely dependent on Arg506 interacting with APC(S360A) to form a nonproductive Michaelis complex. Because docking of APC to FVa and FVIIIa constitutes the first step in the inactivation of the cofactors, we hypothesize that the observed anticoagulant activity may be important for in vivo regulation of thrombin formation.  相似文献   

13.
Kinetic analyses were done to determine what effect factor Xa and protein S had on the activated protein C (APC)-catalyzed inactivation of factor Va bound to phospholipid vesicles or human platelets. In the presence of optimal concentrations of phospholipid vesicles and Ca2+, a Km of 19.7 +/- 0.6 nM factor Va and a kcat of 23.7 +/- 10 mol of factor Va inactivated/mol of APC/min were obtained. Added purified plasma protein S increased the maximal rate of factor Va inactivation only 2-fold without effect on the Km. Protein S effect was unaltered when the phospholipid concentration was varied by 2 orders of magnitude. The reaction on unactivated human platelets yielded a Km = 12.5 +/- 2.6 nM and kcat = 6.2 +/- 0.6 mol of factor Va inactivated/mol of APC/min. Added purified plasma protein S or release of platelet protein S by platelet activation doubled the kcat value without affecting the Km. Addition of a neutralizing anti-protein S antibody abrogated the effect of plasma protein S or platelet-released protein S, but was without effect in the absence of plasma protein S or platelet activation. Studies with factor Xa indicated that factor Xa protects factor Va from APC-catalyzed inactivation by lowering the effective concentration of factor Va available to interact with APC. From these data a dissociation constant of less than 0.5 nM was calculated for the interaction of factor Xa with membrane-bound factor Va. Protein S abrogated the ability of factor Xa to protect factor Va from inactivation by APC without affecting the interaction of factor Xa with factor Va. These combined data suggest that one physiological function of protein S is to allow the APC-catalyzed inactivation of factor Va in the presence of factor Xa.  相似文献   

14.
Protein synthesis in vivo was studied in whole brain of rat fetuses using continuous intravenous infusion of L-[U-14C]tyrosine into unrestrained pregnant rats at 19 and 21 days gestation. Protein degradation (KD) was calculated by subtracting fractional growth rate of brain protein (KG) from the fractional synthesis rate (KS). KS was high at both gestational ages (0.42 +/- 0.03 days-1 at day 19, 0.47 +/- 0.029 days-1 at 21 days), comparable to values previously reported for newborn rat cerebral hemispheres, and threefold higher than is seen in adult animals. KD was similar at both 19 and 21 days gestation (0.19-0.24) and lower than that reported in neonatal rat brain using similar techniques. Protein accretion during the most rapid phase of brain growth (fetus) is accomplished by similar rates of protein synthesis, but decreased rates of degradation when compared with a slower growth phase (newborn). KD in the brain of the rapidly growing fetus is slightly higher than in adult cerebral hemispheres.  相似文献   

15.
The anticoagulant protein C pathway   总被引:16,自引:0,他引:16  
Dahlbäck B  Villoutreix BO 《FEBS letters》2005,579(15):3310-3316
The anticoagulant protein C system regulates the activity of coagulation factors VIIIa and Va, cofactors in the activation of factor X and prothrombin, respectively. Protein C is activated on endothelium by the thrombin-thrombomodulin-EPCR (endothelial protein C receptor) complex. Activated protein C (APC)-mediated cleavages of factors VIIIa and Va occur on negatively charged phospholipid membranes and involve protein cofactors, protein S and factor V. APC also has anti-inflammatory and anti-apoptotic activities that involve binding of APC to EPCR and cleavage of PAR-1 (protease-activated receptor-1). Genetic defects affecting the protein C system are the most common risk factors of venous thrombosis. The protein C system contains multi-domain proteins, the molecular recognition of which will be reviewed.  相似文献   

16.
Substitution of the Gla-domain of activated protein C (APC) with the Gla-domain of prothrombin (APC-PTGla) improves the anticoagulant activity of APC independent of protein S. Previous FRET studies showed that this substitution alters the active-site topography of this mutant, rendering it identical to the active site of the APC-protein S complex. In this study, we characterized the functional properties and the active-site topography of another APC chimera containing the Gla-domain of factor X (APC-FXGla). We discovered that the anticoagulant activity of this mutant was similarly improved independent of protein S. The average distance of the closest approach (L) between the donor dye fluorescein attached to the active site of APC derivatives and the acceptor dye octadecylrhodamine incorporated into PC/PS vesicles was determined to be 99 A for APC and 84-86 A for both APC-PTGla and APC-FXGla. Protein S minimally influenced the L values of the APC chimeras, however, it lowered this value to 87 A for wild-type APC. Further studies revealed that neither chimera elicits a protective signaling response in the TNF-alpha-activated endothelial cells. These results suggest that unique structural features within the Gla-domain of APC enable the protease to interact with endothelial protein C receptor in the antiinflammatory pathway, while the same features also cause an inherently lower specific activity for APC in the anticoagulant pathway. This adaptation has made APC a cofactor-dependent protease, requiring the cofactor function of protein S for its optimal anticoagulant function, which appears to involve the alteration of the active-site topography of APC above the membrane surface.  相似文献   

17.
Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.  相似文献   

18.
p70 ribosomal protein S6 kinase 1 (S6K1) is regulated by multiple phosphorylation events. Three of these sites are highly conserved among AGC kinases (cAMP dependent Protein Kinase, cGMP dependent Protein Kinase, and Protein Kinase C subfamily): the activation loop in the kinase domain, and two C-terminal sites, the turn motif and the hydrophobic motif. The common dogma has been that phosphorylation of the hydrophobic motif primes S6K1 for the phosphorylation at the activation loop by phosphoinositide-dependent protein kinase 1 (PDK1). Here, we show that the turn motif is, in fact, phosphorylated first, the activation loop second, and the hydrophobic motif is third. Specifically, biochemical analyses of a construct of S6K1 lacking the C-terminal autoinhibitory domain as well as full-length S6K1, reveals that S6K1 is constitutively phosphorylated at the turn motif when expressed in insect cells and becomes phosphorylated in vitro by purified PDK1 at the activation loop. Only the species phosphorylated at the activation loop by PDK1 gets phosphorylated at the hydrophobic motif by mammalian target of rapamycin (mTOR) in vitro. These data are consistent with a previous model in which constitutive phosphorylation of the turn motif provides the key priming step in the phosphorylation of S6K1. The data provide evidence for regulation of S6K1, where hydrophobic motif phosphorylation is not required for PDK1 to phosphorylate S6K1 at the activation loop, but instead activation loop phosphorylation of S6K1 is required for mTOR to phosphorylate the hydrophobic motif of S6K1.  相似文献   

19.
The complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号