首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, two laboratory scale sequencing batch reactors (SBRs) were conducted to study the stability of aerobic granules. The strategy was involved in stepwise increase in ammonium (NH4+-N) concentration in the influent. Results showed that the activity of nitrifying bacteria and diameter of the aerobic granules significantly increased with gradually increasing NH4+-N, which reached persistently new balances by homeostasis. As a result, the stability of aerobic granules was remarkably enhanced. The value of sludge volume index (SVI) was below 25 ml/g, the mean settling velocity was excellent up to 107 m/h. The NH4+-N removal efficiency averaged above 99% and total nitrogen (TN) removal was greatly enhanced and could reach 68%. Besides dissolved oxygen, the granules size was also a dominant factor to influence denitrification, which could gradually increase in variable conditions through homeostasis. Stable, dense and well-settling nitrifying granules can be developed for simultaneous nitrification and denitrification removal.  相似文献   

2.
气提式内循环硝化反应器运行性能的研究   总被引:25,自引:1,他引:24  
气提式内循环反应器具有很好的生物硝化性能,能承受高进水氨浓度(78.49mmol/L),具有高容积转化效率(163.18 mmol/L·d),运行性能稳定(氨去除率保持在94.42%以上)。在气提式内循环反应器的运行过程中,可产生硝化颗粒污泥。颗粒污泥开始出现的时间约为45d,颗粒污泥的粒径平均值0.83 mm,沉降速度55.53m/h,氨氧化活性0.95mmol (NH+4-N)/g(VS)·d。硝化颗粒污泥也具有厌氧氨氧化活性,氨氧化速率0.23mmol (NH+4-N)/g(VS)·d,亚硝酸还原速率0.24mmol (NO-2-N)/g(VS)·d。  相似文献   

3.
A physiological study of a nitrifying sludge was carried out in a sequencing batch reactor (SBR). Pseudo steady-state nitrification conditions were obtained with an ammonium removal efficiency of 99% +/- 1% and 98% +/- 2% conversion of NH4+-N to NO3 - -N. The rate of biomass production was negligible (1.3 +/- 0.1 mg microbial protein-N.L(-1).d(-1)). The sludge presented good settling properties with sludge volume index values lower than 20 mL.g(-1) and an exopolymeric protein/carbohydrate ratio of 0.53 +/- 0.34. Kinetic results indicated that the nitrifying behavior of the sludge changed with the number of cycles. After 22 cycles, a decrease in the specific rate of NO3- -N production coupled with an increase in the NO2- -N accumulation were observed. These results showed that the activity of the nitrite oxidizing bacteria decreased at a longer operation time. Ammonia oxidizing bacteria were found to exhibit the best stability. After 4 months of operation, the specific rates of NH4+-N consumption and NO3- -N production were 1.72 NH4+-N per microbial protein-N per hour (g.g(-1).h(-1)) and 0.54 NO3- -N per microbial protein-N per hour (g.g(-1).h(-1)), respectively.  相似文献   

4.
固定化微生物处理模拟污染地表水   总被引:1,自引:0,他引:1  
魏小娜  李刚  吴波  郭书海  郑涛 《生态学杂志》2012,31(7):1882-1886
以聚乙烯醇和海藻酸钠为包埋剂、驯化后的活性污泥为包埋菌剂,制备固定化微生物颗粒,其中包埋剂与包埋菌剂的比例为2:1。将该固定化微生物颗粒按20%的填充率装填到自制反应器中,用于处理模拟污染地表水,研究该固定化微生物的性能特点及其对模拟污染地表水的净化效果。结果表明:固定化微生物反应器的最佳水力停留时间为10h,最佳进水COD负荷为1.15~1.85g·L-1·d-1。在水温为20~29℃、溶解氧为3~4mg·L-1、水力停留时间为10h的条件下,当进水COD浓度为70.58~91.76mg·L-1、铵氮浓度为13.68~17.82mg·L-1时,COD去除率>62.3%,铵氮去除率>90.6%,表明固定化微生物能够有效地去除污染地表水中的COD和铵氮。  相似文献   

5.
The simultaneous removal of formaldehyde and ammonium in a lab-scale activated sludge unit was investigated. The unit was operated at a hydraulic retention time of 2.4 days with an ammonium concentration in the influent of 350 mg NH4+-N/L, maintaining the ammonium loading rate at 0.15 g NH4+-N/Ld during the operation time. However, the applied organic loading rate was increased stepwise by increasing the formaldehyde concentration from 26 up to 3168 mg/L, corresponding to 0.01-1.40 g COD/Ld. High formaldehyde removal efficiencies, around 99.5% (+/-0.38), were maintained at all the formaldehyde concentrations. Ammonium removal was also very high during the operation period, around 99.9% (+/-0.01). The ammonium concentration in the effluent was lower than 0.1 mg NH4+-N/L at all applied organic loading rates, indicating that there was no inhibition of nitrification by formaldehyde.  相似文献   

6.
Industrial wastes from the production of nitrogen fertilizers, containing about 900 mg N/1, (450 mg NH4-N, 300 mg urea-N and 150 mg NO3-N), showed high activity of I stage nitrifying bacteria. The addition of phosphorus to the wastes increases the intensity of nitrification two-fold and also increase the rate of urea hydrolysis. An attempt was made to obtain a nitrifying activated sludge. CaCO3 and Fe(OH)3 were used as carriers and the culture was aerated with air enriched with CO2. After 90 days an activated sludge was obtained which nitrified an average of 80% NH4-N and urea-N with 4-day aeration time of the wastes. In contrast to the activated sludge, the presence of nitrification phase I and II in biological bed was observed, but the efficiency of the process was considerably low (about 38%).  相似文献   

7.
Aerobic granulation with brewery wastewater in a sequencing batch reactor   总被引:5,自引:0,他引:5  
Aerobic granular sludge was cultivated in a sequencing batch reactor fed with brewery wastewater. After nine-week operation, stable granules with sizes of 2-7 mm were obtained. With the granulation, the SVI value decreased from 87.5 to 32 mL/g. The granular sludge had an excellent settling ability with the settling velocity over 91 m/h. Aerobic granular sludge exhibited good performance in the organics and nitrogen removal from brewery wastewater. After granulation, high and stable removal efficiencies of 88.7% COD(t), 88.9% NH(4)(+)-N were achieved at the volumetric exchange ratio of 50% and cycle duration of 6h. The average COD(t) and COD(s) of the effluent were 212 and 134 mg/L, respectively, and the average effluent ammonium concentration was less than 14.4 mg/L. Nitrogen was removed due to nitrification and simultaneous denitrification in the inner core of granules.  相似文献   

8.
The objective of this study was to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor. During a 140-day long-term operation, influent pH value, dissolved oxygen (DO), and chemical oxygen demand/nitrogen (COD/N) ratio were selected as operating factors to evaluate the maintenance and recovery of nitrite accumulation. Results showed that high DO concentration (2–4 mg/L) could damage nitrite accumulation immediately. However, nitrite accumulation ratio (NAR) could be increased from 1.68?±?1.51 to 35.46?±?7.86 % when increasing the pH values from 7.5 to 8.3 due to the increased free ammonia concentration. Afterwards, stable partial nitrification and high NAR could be recovered when the reactor operated under low DO concentration (0.5–1.0 mg/L). However, it required a long time to recover the partial nitrification of the reactor when the influent COD/N ratios were altered. Fluorescence in situ hybridization analysis implied that ammonium oxidizing bacteria were completely recovered to the dominant nitrifying bacteria in the system. Meanwhile, sludge volumetric index of the reactor gradually decreased from 115.6 to 56.6 mL/g, while the mean diameter of sludge improved from74.57 to 428.8 μm by using the strategy of reducing settling time. The obtained results could provide useful information between the operational conditions and the performance of partial nitrification when treating nitrogen-rich industrial wastewater.  相似文献   

9.
The optimum growth requirements of two nitrifying consortia developed from treated sewage by enrichment technique were determined by a series of experiments. There was total inhibition of nitrification at above 2.75 g l(-1) NH4(+)- N and 2.5 g l(-1) NO2(-)-N and the ammonia oxidizing consortium preferred a pH at 8.5 and the nitrite oxidizing consortium a pH of 7.5 as the optima for nitrification. Optimum temperatures were between 20 degrees and 30 degrees C for both the groups. As the rate of airflow was increased from 1 to 7 l/min, the build-up of NO2(-)-N increased 10-fold and the consumption of NO2(-)-N increased by a factor of 28.8 implying that the ammonia oxidizing consortium in a bioreactor required three times more aeration than that for nitrite oxidizers for expressing their full nitrifying potential. These data directly contribute for developing a fermentation process for the mass production of nitrifiers as well as for designing bioreactors for nitrifying sewage.  相似文献   

10.
It was found that changes in the nitrogen concentration of leachate from the Osaka North Port sea based disposal site were closely related to the way in which dumping was carried out. The nitrogen concentration of the leachate was low due to the low nitrogen content and slow nitrogen dissolution rate of materials dumped previously in the landfill. The dumping of incinerator ash, noncombustible garbage, waterworks sludge and incinerated ash from sewage sludge were followed, and it was found that they caused a sharp increase in nitrogen concentration in the leachate. The main nitrogen form of leachate was NH4-N, and its concentration reached 50 mg/l after 6 years of landfilling. Successful nitrification treatment of leachate (more than 80% nitrification) was possible by using polyvinyl alcohol immobilized acclimated marine nitrifying sludge with an NH4-N loading rate of 2.9 mg-NH4-N/g-pellets/d. Low NO2-N was detected throughout the continuous nitrification experiments, so the rate limiting step in the nitrification treatment was revealed to be a nitrification step (NH4+→NO2). The addition of inorganic carbon to the test leachate enabled us to perform nitrification treatment even with a high NH4-N loading rate. Dolomite limestone was shown experimentally to be able to replace inorganic chemicals.  相似文献   

11.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation reactor in a pilot-scale sequencing batch reactor (SBR). Soy protein wastewater was used as an external carbon source for altering the influent chemical oxygen demand/nitrogen (COD/N) ratios of SBR. Initially, the phenomenon of partial nitrification was observed and depressed by increasing the influent COD/N ratios from 3.32 to 7.24 mg/mg. After 90 days of aerobic granulation, the mixed liquor suspended solids concentration of the reactor increased from 2.80 to 7.02 g/L, while the sludge volumetric index decreased from 105.51 to 42.99 mL/g. The diameters of mature aerobic granules vary in the range of 1.2 to 2.0 mm. The reactor showed excellent removal performances for COD and $ {\text{NH}}_4^{ + }{\text{ - N}} $ after aerobic granulation, and average removal efficiencies were over 93% and 98%, respectively. The result of this study could provide further information on the development of aerobic granule-based system for full-scale applications.  相似文献   

12.
膜-生物硝化反应器处理含氨废水效能的研究   总被引:1,自引:0,他引:1  
武小鹰  郑平  胡宝兰   《生物工程学报》2005,21(2):279-283
研究了膜 生物硝化反应器对含氨废水的处理效能以及分离膜的截留和渗透效能。膜_生物反应器启动迅速 ,在水力停留时间为 1d的情况下 ,反应器最高进水浓度达 80mmol(NH4+-N)·L-1 ,最高容积负荷达 1 12kg(NH4+ -N)·m-3·d-1 ,氨氮去除率保持在 95%以上。试验证明 ,分离膜对微生物有良好的截留作用 ,50天内反应器的污泥浓度从 5g·L-1 增长到 10g·L-1 ,分离膜表面附着的生物层则对废水氨氮和亚硝氮有进一步的转化作用。在液位差低于 80cm时 ,提高液位差可增大膜渗透通量 ;液位差超过 80cm后 ,增大液位差的膜渗透通量效应很小 ;其中 ,当液位差为 2 0cm左右时 ,膜通量达 2 . 5 1L·m-2 ·h-1 ,阻力最小 [(2 . 6 3× 10-5)m-1]。该膜_生物硝化反应器可依靠液位差压力驱动出水 ,无需外加动力。  相似文献   

13.
An industrial wastewater containing a total Kjeldahl nitrogen (TKN) of 12.80 g l(-1) was treated in a continuously fed activated sludge reactor. The main contaminant was urea (21.52 g l(-1)), together with minor amounts of the nitrification inhibitor dicyandiamide (0.46 g l(-1)) and free ammonia (0.56 g l(-1)). The wastewater was diluted 1:1 with water and treated under alkaline conditions (pH 9.4), enabling the simultaneous hydrolysis of urea and stripping of free ammonia in one aerobic reactor. Experiments were conducted to eliminate the remaining ammonia in a separate treatment unit by nitrification/denitrification. An adapted nitrifying bacterial population was isolated which was able to nitrify at a rate of 0.1 g nitrogen l(-1) day(-1) at a dicyandiamide concentration of 0.22 g l(-1). However, this was found to be too slow for an industrial-scale operation. Therefore, separate stripping with air or steam after pH adjustment to > or =10.5 is proposed. The diluted wastewater was treated with a hydraulic retention time of 6 days, corresponding to a volumetric nitrogen loading rate of 1.1 g nitrogen l(-1) day(-1) with an overall TKN reduction of 78.0%.  相似文献   

14.
Su C  Zhu L  Zhang C  Qi X  Guo Y  Gao R 《Biotechnology letters》2012,34(5):883-888
Aerobic granules for sulphide and ammonium removal were cultivated in a sequencing batch reactor, and the microbial community of the aerobic granules was investigated by denaturing gradient gel electrophoresis. The loading rate increased from 0.15 to 0.9 kg S2? m?3 d?1, and the removal efficiencies of sulphide, chemical oxygen demand, and NH4 +-N were higher than 99, 80, and 98%, respectively. However, sludge settleability became poorer when the loading rate exceeded 0.3 kg S2? m?3 d?1. The denitrifying bacteria in the aerobic granules were Thauera sp., Pseudomonas alcaligenes, and uncultured planctomycetes, indicating that multiple N-removing processes occurred simultaneously in the aerobic granules. These processes could include nitrification and denitrification, aerobic denitrification, and anaerobic ammonia oxidation. Sludge settleability became poorer because of the overgrowth of uncultured Thiothrix sp.  相似文献   

15.
在气升式内循环硝化反应器中研究了渗透压对硝化作用的影响。保持进水氨氮浓度420mg·L-1,将进水渗透压逐渐从4.3×105Pa提高到18.8×105Pa,硝化反应器的氨氮转化率稳定在93%~100%。将进水渗透压进一步提高到19.2×105Pa,氨氮转化率降至69.2%。渗透压对硝化作用的影响具有突发性,临界值在18.8×105~19.2×105Pa之间。受高渗透压胁迫时,活性污泥中硝化细菌的形态趋向单一,个体变小,内膜数量减少,并产生许多不明成分的颗粒状内含物。解除渗透压胁迫后,细胞结构恢复。添加钾离子能够缓解高渗压对硝化作用的影响。高渗透压胁迫以及解除渗透压胁迫可增强污泥硝化活性,比污泥氨氮转化率(污泥以SS计)分别从0.083kg·kg-1·d-1升至0.509kg·kg-1·d-1和2.569kg·kg-1·d-1,同比提高5.1倍和30.0倍。  相似文献   

16.
An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration.  相似文献   

17.
Novel aerobic granular sludge membrane bioreactor (GMBR) was established by combining aerobic granular sludge technology with membrane bioreactor (MBR). GMBR showed good organics removal and simultaneous nitrification and denitrification (SND) performances for synthesized wastewater. When influent total organic carbon (TOC) was 56.8-132.6 mg/L, the TOC removal of GMBR was 84.7-91.9%. When influent ammonia nitrogen was 28.1-38.4 mg/L, the ammonia nitrogen removal was 85.4-99.7%, and the total nitrogen removal was 41.7-78.4%. Moreover, batch experiments of sludge with different particle size demonstrated that: (1) flocculent sludge under aerobic condition almost have no denitrification capacity, (2) SND capacity was caused by the granular sludge, and (3) the denitrification rate and total nitrogen removal efficiency were enhanced with the increased particle size. In addition, study on the sludge morphology stability in GMBR showed that, although some granular sludge larger than 0.9 mm disaggregated at the beginning of operation, the granular sludge was able to maintain the stability of its granular morphology, and at the end of operation, the amount of granular sludge (larger than 0.18 mm) stabilized in GMBR was more than 56-62% of the total sludge concentration. The partial disaggregation of large granules is closely associated with the change of operating mode from sequencing batch reactor (SBR) system to MBR system.  相似文献   

18.
The effect of benzene on the nitrifying activity of a sludge produced in steady-state nitrification was evaluated in batch cultures. Benzene at 10 mg/L inhibited nitrate formation by 53%, whereas at 5 mg/L there was no inhibition. For initial benzene concentrations of 0, 7, and 10 mg/L, the specific rates of NO(3)(-)-N production were 0.545 +/- 0.101, 0.306 +/- 0.024, and 0.141 +/- 0.010 g NO(3)(-)-N/g microbial protein-N.h, respectively. The specific rates of benzene consumption at 7, 12, and 20 mg/L were 0.034 +/- 0.003, 0.050 +/- 0.006, and 0.027 +/- 0.002 g/g microbial protein-N.h, respectively. Up to a concentration of 10 mg/L, benzene was first oxidized to phenol, which was later totally oxidized to acetate. Benzene at higher concentrations (20 and 30 mg/L) was converted to intermediates other than acetate, phenol, or catechol. These results suggest that this type of nitrifying consortium coupled with a denitrification system may have promising applications for complete removal of nitrogen and benzene from wastewaters.  相似文献   

19.
He R  Liu XW  Zhang ZJ  Shen DS 《Bioresource technology》2007,98(13):2526-2532
A sequential upflow anaerobic sludge blanket (UASB) and air-lift loop sludge blanket (ALSB) treatment was introduced into leachate recirculation to remove organic matter and ammonia from leachate in a lab-scale bioreactor landfill. The results showed that the sequential anaerobic-aerobic process might remove above 90% of COD and near to 100% of NH4+ -N from leachate under the optimum organic loading rate (OLR). The total COD removal efficiency was over 98% as the OLR increased to 6.8-7.7 g/l d, but the effluent COD concentration increased to 2.9-4.8 g/l in the UASB reactor, which inhibited the activity of nitrifying bacteria in the subsequent ALSB reactor. The NO3- -N concentration in recycled leachate reached 270 mg/l after treatment by the sequential anaerobic-aerobic process, but the landfill reactor could efficiently denitrify the nitrate. After 56 days operation, the leachate TN and NH4+ -N concentrations decreased to less than 200 mg/l in the bioreactor landfill system. The COD concentration was about 200 mg/l with less than 8 mg/l BOD in recycled leachate at the late stage. In addition, it was found that nitrate in recycled leachate had a negative effect on waste decomposition.  相似文献   

20.
The effectiveness of bioaugmentation in the improvement of the start-up of a biofilm airlift reactor to perform partial nitrification was investigated. Two identical biofilm airlift reactors were inoculated. The non-bioaugmented reactor (NB-reactor) was inoculated with conventional activated sludge, whereas the bioaugmented reactor (B-reactor) was seeded with the same conventional activated sludge but bioaugmented with nitrifying activated sludge from a pilot plant performing full nitritation under stable conditions (100% oxidation of influent ammonium to nitrite). The fraction of specialized nitrifying activated sludge in the inoculum of the B-reactor was only 6% (measured as dry matter). To simplify comparison of the results, operational parameters were equivalent for both reactors. Partial nitrification was achieved significantly faster in the B-reactor, showing a very stable operation. The results obtained by fluorescence in situ hybridization assays showed that the specialized nitrifying biomass added to the B-reactor remained in the biofilm throughout the start-up period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号