首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17200篇
  免费   1518篇
  国内免费   2053篇
  2024年   12篇
  2023年   237篇
  2022年   308篇
  2021年   904篇
  2020年   661篇
  2019年   832篇
  2018年   825篇
  2017年   623篇
  2016年   764篇
  2015年   1230篇
  2014年   1393篇
  2013年   1413篇
  2012年   1729篇
  2011年   1526篇
  2010年   953篇
  2009年   889篇
  2008年   1001篇
  2007年   856篇
  2006年   698篇
  2005年   609篇
  2004年   514篇
  2003年   447篇
  2002年   362篇
  2001年   239篇
  2000年   236篇
  1999年   200篇
  1998年   138篇
  1997年   163篇
  1996年   138篇
  1995年   103篇
  1994年   82篇
  1993年   65篇
  1992年   77篇
  1991年   55篇
  1990年   60篇
  1989年   35篇
  1988年   45篇
  1987年   31篇
  1986年   24篇
  1985年   43篇
  1984年   37篇
  1983年   16篇
  1982年   27篇
  1979年   8篇
  1978年   11篇
  1976年   8篇
  1974年   13篇
  1973年   9篇
  1971年   9篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response.  相似文献   
4.
MLK-3 kinase is a widely expressed serine/ threonine kinase that bears multiple protein interaction domains and regulates signals mediated by the stress-responsive pathway. Thus, MLK-3 signaling affects numerous cellular processes, raising the possibility that MLK-3 might play a role in oncogenesis. In this report, we describe the fine mapping of the MLK-3 gene within the 11q13.1 chromosomal region. By integrating data from somatic cell hybrids and double color fluorescence in situ hybridization on metaphase chromosomes and DNA fibers, MLK-3 has been assigned approximately 1 Mb telomeric of PYGM, close to the D11S546 locus. Since the MEN1 susceptibility locus is also located within the 11q13.1 region, we have carried out Southern and Northern blot analyses, as well as protein truncation assays to establish whether abnormalities in MLK-3 lead to the development of this familial cancer syndrome. Our observations exclude MLK-3 as the MEN1 gene. Received: 25 September 1996 / Revised: 16 December 1996  相似文献   
5.
SNAP-25, synaptosomal associated protein of 25 kDa, is reported to be a t-SNARE (target receptor associated with the presynaptic plasma membrane) involved in the docking and fusion of synaptic vesicles. We present here the first ultrastructural localization of SNAP-25 in intact neurons by pre-embedding EM immunocytochemistry in rat brains, hippocampal slice cultures, and PC12 cells. In differentiated neurons, SNAP-25 labeling was clearly membrane-associated. The labeling was most prominent in the plasma membrane of axons and excluded from the plasma membranes of soma and dendrites. Furthermore, SNAP-25 did not appear to be restricted to the synaptic junctions. SNAP-25 labeling was seen in the cytoplasm of the soma and large dendrites, mostly associated with the Golgi complexes. There were also some SNAP-25 labeled tubulo-vesicular structures in the cytoplasm of the soma and the axons, but rarely in the smaller dendrites. In PC12 cells, after 5–10 minutes of high potassium (75 mM) stimulation in the presence of HRP, SNAP-25 labeling appeared, additionally, on HRP-filled early endosomes. After a longer (20–30 minutes) HRP incubation, most of the later stage endosomes and lysosomes were loaded with HRP but they were negative for SNAP-25. These results suggest that SNAP-25 is sorted out of these late endosomal compartments, and that the bulk of the SNAP-25 protein is probably recycled back to the axolemma from the early endosomes. In contrast, in those samples which were incubated with HRP for longer periods, there were still some SNAP-25–positive vesicular structures which were HRP-negative. These structures most likely represent anterograde vesicles that carry newly synthesized SNAP-25 from the soma to the axolemma by axonal transport. SNAP-25 appears to be sorted at the Golgi complex to reach the axolemma specifically. Its widespread distribution all along the axolemma does not support the view of SNAP-25 as a t-SNARE limited for synaptic exocytosis.  相似文献   
6.
7.
8.
9.
10.
Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production due to their hardiness, ease of transfection, and production of glycan structures similar to those in natural human monoclonal antibodies. To enhance the usefulness of CHO-K1 cells we developed a new selection system based on double auxotrophy. We used CRISPR-Cas9 to knockout the genes that encode the bifunctional enzymes catalyzing the last two steps in the de novo synthesis of pyrimidines and purines (uridine monophosphate synthase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase [ATIC], respectively). Survival of these doubly auxotrophic cells depends on the provision of sources of purines and pyrimidines or on the transfection and integration of open reading frames encoding these two enzymes. We successfully used one such double auxotroph (UA10) to select for stable transfectants carrying (a) the recombinant tumor necrosis factor-α receptor fusion protein etanercept and (b) the heavy and light chains of the anti-Her2 monoclonal antibody trastuzumab. Transfectant clones produced these recombinant proteins in a stable manner and in substantial amounts. The availability of this double auxotroph provides a rapid and efficient selection method for the serial or simultaneous transfer of genes for multiple polypeptides of choice into CHO cells using readily available purine- and pyrimidine-free commercial media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号