首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
桦木科植物花柱适应风媒传粉的特征   总被引:1,自引:0,他引:1  
植物体为适应自己的传粉系统, 表现出高度的适应特征。风媒花植物为适应风传播花粉, 要形成特殊的结构, 以扩大接受花粉粒的面积。利用扫描电镜观察了桦木科(Betulaceae)6属18种植物花柱的形态及花粉粒在花柱上的萌发过程, 探讨了桦木科植物花柱适应风媒传粉的特征。结果表明, 桦木科植物的二心皮(铁木、云南鹅耳枥稀为三心皮)雌蕊具柱状花柱, 柱头不发达, 花柱表皮细胞长条状, 纵向排列紧密。传粉时, 花柱表皮细胞能执行柱头的功能, 接受花粉粒, 为花粉粒萌发提供场所和萌发条件。桦木科植物花柱有2种类型: 一种是花柱表皮细胞能形成乳突, 花粉管经乳突细胞进入花柱; 另一种是花柱表皮细胞不形成乳突, 花粉管经过花柱表皮细胞或胞间隙进入花柱。无论花柱表皮细胞是否形成乳突, 乳突的形态、大小以及花粉管和乳突的结合方式等在族间、属间、属内种间存在差异。与基部被子植物相比, 桦木科植物的花柱呈现适应风媒传粉的进化特征。桦木科植物花柱表皮细胞形成的乳突与基部被子植物柱头乳突功能相同, 是桦木科植物风媒传粉的适应策略。  相似文献   

2.
莴苣授粉前后柱头与花柱中钙的分布变化   总被引:2,自引:0,他引:2  
莴苣柱头呈两裂片状,有接受花粉的接受面和非接受面之分。授粉前后,柱头接受面乳突细胞的细胞壁中贮存丰富的细小钙颗粒,而非接受面的表皮细胞壁中的钙颗:粒很少。在花柱组织中钙的分布具有明显特征,在同一水平上,钙主要分布在引导组织的质外体中,如细胞壁和细胞间隙中,而在引导组织外的薄壁组织中钙主要分布在的细胞内液泡和细胞壁中以及维管束导管内。在花柱不同水平上,花柱中的钙呈现出梯度分布,顶端各组织中的钙颗粒较少,基部各组织中的钙颗粒较多。授粉后1h花柱基部组织的钙颗粒增多,钙梯度分布现象增强。花柱引导组织中的钙梯度分布很可能是吸引花粉管向下生长的原因。讨论了莴苣花柱引导组织中钙梯度分布特征和花粉管在其体内生长的关系。  相似文献   

3.
莴苣柱头呈两裂片状,有接受花粉的接受面和非接受面之分。授粉前后,柱头接受面乳突细胞的细胞壁中贮存丰富的细小钙颗粒,而非接受面的表皮细胞壁中的钙颗粒很少。在花柱组织中钙的分布具有明显特征,在同一水平上,钙主要分布在引导组织的质外体中,如细胞壁和细胞间隙中,而在引导组织外的薄壁组织中钙主要分布在的细胞内液炮和细胞壁中以及维管束导管内。在花柱不同水平上,花柱中的钙呈现出梯度分布,顶端各组织中的钙颗粒较少,基部各组织中的钙颗粒较多。授粉后1h花柱基部组织的钙颗粒增多,钙梯度分布现象增强。花柱引导组织中的钙梯度分布很可能是吸引花粉管向下生长的原因。讨论了莴苣花柱引导组织中钙梯度分布特征和花粉管在其体内生长的关系。  相似文献   

4.
甘蓝油菜雌蕊中花粉管生长途径的钙离子定位   总被引:3,自引:1,他引:2  
用焦锑酸钾定位 Ca~(2 )的技术,证明了甘蓝油菜(Brassica napus)柱头乳突细胞的少量分泌物、柱头表皮下的引导组织细胞间隙、花柱引导组织细胞壁外表面和胞间隙的分泌物以及子房假隔膜分泌区的表皮细胞外和内部引导组织细胞壁外表面和胞间隙的分泌物中均有 Ca~(2 )沉淀存在,而花柱皮层薄壁细胞无此种现象。花粉管生长的整个途径中 Ca~(2 )的存在与花粉管在雌蕊中的定向生长有关。  相似文献   

5.
两个蓝莓品种花器官的形态特征观察   总被引:2,自引:0,他引:2  
为了解蓝莓(Vaccinium spp.)花器官的形态特征,利用蔡司SV11体视显微镜和扫描电子显微镜JSM-6360LV对‘园蓝’和‘夏普蓝’两个品种的花器官进行了观察。结果表明,这两个品种的花丝呈片状,被毛,‘园蓝’的花丝腺毛较短,花丝基部表皮细胞近长方形;‘夏普蓝’的花丝腺毛细长,较浓密,花丝基部表皮细胞近棱形。‘园蓝’和‘夏普蓝’的花药呈棒状,由4个花粉囊组成,呈左右对称,同侧的两个花粉囊之间的药隔沟明显;花药表皮细胞具乳突;成熟的花药顶端形成2个管状结构,管口孔裂。花粉为四合体,外形为准四面体,中等大小,表面具不规则皱波状纹饰,并有多处凹陷;萌发孔沟的长度、宽度、孔盖长宽与形状、突起程度在品种间有差异。蓝莓的柱头呈截平形,属于湿型柱头,‘园蓝’的柱头表面具指状乳突细胞;花柱表皮细胞呈圆柱型,形成束状,分隔明显;‘夏普蓝’柱头表面具纹状乳突细胞,花柱表皮细胞呈圆柱型,长轴与花柱平行,不形成束状。这些为蓝莓品种的分类鉴定、系统演化等研究提供了依据。  相似文献   

6.
长花柱型滇丁香小孢子发生及雄配子体发育   总被引:2,自引:0,他引:2  
利用常规石蜡切片法和细胞学压片法,对异型花柱植物滇丁香的长花柱型植株的小孢子发生、雄配子体发育及花粉萌发进行观察。结果表明:(1)长花柱型滇丁香具5枚花药,花药4室。(2)花药壁由1层表皮、1层花药内壁、2层中层和1~3层绒毡层组成;花药壁发育方式为基本型,绒毡层类型为腺质绒毡层。(3)小孢子母细胞减数分裂的胞质分裂为同时型,四分体排列方式为四面体型,偶有左右对称型;不同药室间小孢子母细胞减数分裂不同步。(4)成熟花粉粒为二细胞型。(5)小孢子发生和雄配子体发育过程正常,表明长花柱型滇丁香属于发育正常的两性花。(6)授粉4h后,长花柱型滇丁香的花粉在长、短两种花柱柱头上的萌发率分别达(91.8±1.6)%和(93.2±1.1)%,且两者间无显著性差异(t=1.585,df=8,p=0.152),表明长花柱型滇丁香的成熟花粉粒在长、短两种花柱柱头上的萌发均正常。  相似文献   

7.
花柱内引导组织是花粉管生长时的必需结构,对花粉管的生长具有支持、营养、引导生长等重要作用。为了研究授粉对花柱引导组织结构的影响,该研究对烟草开花后不授粉及授粉1~4d内的花柱引导组织结构动态进行了观察比较。研究发现:未授粉花柱内的引导组织的变化是一个类似于衰老的死亡过程,授粉后花柱内引导组织细胞发生剧烈变化,细胞快速死亡,与未授粉花柱的引导组织的变化完全不同,它们可能是两种完全不同的调控方式。  相似文献   

8.
烟草柱头和花柱中阿拉伯半乳糖蛋白的定位   总被引:2,自引:0,他引:2  
通过Western印迹法、免疫组织化学和超微细胞化学等技术,研究了烟草柱头和花柱中阿拉伯半乳糖蛋白(arabinogalactan-proteins,AGPs)的分布。结果表明烟草柱头和花柱组织中含有大量的AGPs,主要分布于柱头表皮细胞的细胞质和分泌层细胞的胞外基质中,且授粉前后AGPs的分布情况差异不明显;而花柱中的AGPs主要分布于表皮细胞的外层细胞壁、维管组织周围细胞的细胞质及引导组织的胞外基质中;花粉管通过后,引导组织胞外基质中AGPs减少,而花粉管细胞质和花粉管壁中检测到大量AGPs。  相似文献   

9.
荞麦柱头、花柱的结构及ATP酶的超微细胞化学定位   总被引:1,自引:0,他引:1  
利用超薄切片结合ATP酶定位技术,研究了荞科柱头及花柱的结构。结果表明,成熟的荞麦柱头表面无乳突细胞,柱头细胞的细胞壁存在发达的壁内突,花柱为实心型无引导组织,柱头表面的细胞壁根据电子密度的不同可划分为3层,最外一层电子密度最大,最内一层电子近透明,并形成壁内突的结构,柱头表面和花柱细胞的质膜上ATP酶的活性较高,表明成熟的柱头和花柱细胞物质代谢和运输十分活跃,成熟的柱头和花柱细胞中有丰富的蛋白质和多糖类物质。  相似文献   

10.
猕猴桃花粉原位生长过程中Ca2+的超微细胞化学定位   总被引:2,自引:0,他引:2  
应用扫描电镜和荧光显微镜对软枣猕猴桃同种花粉在柱头上原位萌发及花粉管生长情况进行了观察,并用焦锑酸盐沉淀法对其授粉前后柱头及花柱中Ca2+进行超微细胞化学定位.结果显示:(1)猕猴桃柱头属于干性柱头,具有一道裂沟,乳突呈长圆柱形,授粉前后形态差异不明显.(2)授粉后3 h,花粉管生长穿过柱头表面,授粉后7 h,花粉管生长到达花柱底部;(3)授粉前后,柱头接受面靠近柱头外围细胞的角质层一侧细胞器内含有丰富的钙,而柱头非接受表面钙颗粒分布很少;(4)授粉前和授粉后3 h,花柱顶端钙颗粒较少,基部钙颗粒较多;授粉后7 h,花柱顶端和基部钙分布密度无明显差别;(5)授粉前后花柱顶端钙主要均匀分布在细胞质膜位置;在花柱基部授粉前钙主要分布在引导组织胞间隙中,授粉后3 h主要分布在细胞质内,授粉后7 h主要存在于细胞质、内质网上.研究表明,猕猴桃授粉前后,柱头和花柱组织中均含有钙,授粉前和授粉后3 h花柱中的钙呈现出梯度分布,授粉后7 h钙的梯度分布现象减弱甚至消失.  相似文献   

11.
The capitate stigma of Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Leonard is an intensely folded bilobed structure. The epidermal layer of the stigma consists of non-papillate cells. Before anthesis the epidermis is covered with a cuticle and thin proteinaceous layer. Elongated subepidermal cells constitute the secretory zone. Cell disintegration in the central region of each stigma lobe leads to cavities that become connected to the central cavity in the style. During early anthesis it appears as if the receptive surface of the stigma is confined to the depressions of the stigma surface and to the cleft between the two stigma lobes as the secretory product and pollen grains are mainly confined to these areas. The secretory products of the stigma and style are released during five different stages from prior to anthesis to late anthesis. The stigmatic exudate appears complex and consists of carbohydrates, proteins and lipids. The style has a hollow, lysigenous, fluid-filled canal that is not lined with an epidermal layer or cuticle. The stylar canal is continuous with the opening between the two stigma lobes and provides an open route for the passage of exudate. The stylar exudate is PAS-positive. The dorsal and ventral bundles that supply the style branch in such a way as to almost form a cylinder around the central transmitting tissue and stylar canal. New sieve elements proliferate before anthesis.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 295–304.  相似文献   

12.
The gynoecium of Phaseolus acutifolius var. latifolius, a self-compatible legume, is characterized by a wet non-papillate stigma, an intermeditae hollow/solid style type, and secretory cells on the ventral surface of the ovary which direct pollen tube growth. The stigma is initially receptive 5–6 days prior to anthesis. Production of stigmatic secretions, composed primarily of carbohydrates and lipids, fragment the cuticle covering epidermal cells of the stigma early in ontogeny; the lipidic aspect of the copious secretions apparently serves to inhibit desiccation after the cuticle is ruptured. Stylar canal development occurs as a combination of elongation of a basal canal present early in development, and dissolution of part of a solid transmitting tract tissue just below the stigma. Anthers dehisce and the tricolporate pollen is released onto the receptive stigma one day before anthesis. Following initial growth in intercellular spaces in the transmitting tract of the stigma, pollen tubes adhere to epidermal secretory cells along the ventral side of the stylar canal and upper ovary; here the transmitting tract is apparently limited in the number of tubes it can accommodate, providing a possible site of selection of male gametes.  相似文献   

13.
Heteromorphic characters and structural features of the pollen tube pathway are described in tristylous Pontederia sagittata to assess their influence on the pollination process and in mediating self-incompatibility behavior. Heteromorphic characters that distinguish the floral morphs include style length, stigma depth, stigmatic papillae length, stylar parenchyma cell length, area of the stylar canal, stamen height, anther size, and pollen size. Unlike several distylous species that have been investigated, the exine of pollen in P. sagittata was not strongly differentiated among the pollen types, and no differences in stigma cytochemistry were apparent. Features common to the floral morphs were a wet stigma, a hollow trilobed stylar canal separating into two sterile and one fertile canal, and a single anatropous ovule with a highly elaborated integumentary obturator. The similarity in structural features of the pollen tube pathway of P. sagittata to those found in monocotyledonous taxa with gametophytic self-incompatibility suggests that phylogenetic constraints may have influenced the evolution of trimorphic incompatibility in the Pontederiaceae.  相似文献   

14.
The style of wheat divides into 2 branches, separated from its base and covered with a large number of slender stigmatic branches. The stigma is of dry type. The style is solid. There is no transmitting tissue differentiated in the style. Young stylar cells appear polygonal in transverse sections and elongated in longitudinal sections with an increase in length of the cells from periphery towards center. In transverse sections, mature stylar cells look extremely irregular. They are contorted and mosaicked with one another. During their development, stylar cells elongated vigorously with intrusive growth. The wall of stylar cells is thin, except at the corners where cells connect, that slight thickening of the cell wall occurs. Stylar cells start vacuolation at the earlier stages and gradually become highly vacuolated, but still remain rich in organelles, such as mitochondria, endoplasmic reticulum, dictyosomes and chloroplasts, the amount of which varied with the development stages of the style. Stigmatic branches are differentiated from the stylar epidermal cells, composed of 4 files of cells which link end to end with one another. Not long before anthesis, wall material in the intercellular corners becomes loose and porous. After pollination, pollen tubes grow along the intercellular spaces among the 4 files of cells in the stigmatic branches and then enter the style. Pollen tubes may pass through any intercellular corner throughout the 2 branches of the style, except for the lateral-outer portion which is composed of larger stylar cells. Eventually, pollen tubes enter the ovary.  相似文献   

15.
Low seed ovule ratios have been observed in natural populations of Polygala vayredae Costa, a narrowly endemic species from the oriental pre-Pyrenees. To evaluate physical and nutritional constraints and pollen tube attrition in this endemic species, stigma and style anatomy, as well as pollen tube development along the pistil were investigated using light and fluorescence microscopy. The structural morphology of the stigmatic region was also examined with scanning electron microscopy. Pollen grains that reached the stigmatic papillae came into contact with a lipid-rich exudate and germinated easily. Although a large number of pollen grains reach the stigmatic papillae, few pollen tubes were able to grow into the style towards the ovary. The style was hollow, with the stylar channel beginning a few cells below the stigmatic papillae. Initially, the stylar channel area was small compared to other levels of the style, and was surrounded by lipid-rich, highly metabolic active cells. Furthermore, lipid-rich mucilage was detected inside the stylar channel. At subsequent style levels towards the ovary, no major reserves were detected histochemically. The reduced intercellular spaces below the stigmatic papillae and the reduced area of the stylar channel at its commencement are suggested to physically constrain the number of pollen tubes that can develop. In subsequent levels of the style, the stylar channel could physically support a larger number of pollen tubes, but the lack of nutritional reserves cannot be disregarded as a cause of pollen tube attrition. Finally, the number of pollen tubes entering the ovary was greater than the number of ovules, suggesting that interactions occurring at this level play a major role in the final reproductive outcome in this species.  相似文献   

16.
Transmitting tissue in Ornithogalum is divided into three regions corresponding to classical divisions of the gynoecium: stigma, style, and ovary. The stigma differentiates from epidermal cells of the stylar apex. These cells form the stigmal papillae and have dense cytoplasm with abundant ER and lipid bodies. Papillae have walls with small transfer-ingrowths. At floral receptivity, papillae secrete a small amount of surface exudate. Epidermal cells of the style contain numerous spherosomes and have thin filaments of cytoplasm traversing the central vacuole. The stylar cortex is composed of 3-6 layers of parenchyma cells which contain numerous spherosomes and often have secondary vacuoles. Vascular tissue in the style consists of one collateral bundle in each lobe. Cells of the epidermal layer lining the stylar canal are secretory. They are initially vacuolate but fill progressively with dense cytoplasm as their secretory activity increases. Secretory activity occurs in three phases, each characterized by a particular organelle population and secretory product. At anthesis, the canal is filled with an exudate consisting of carbohydrate, protein, and lipid. In the ovary, the obturator differentiates from cells at the base of the funiculus and the tip of the carpel margins. It forms a pad of tissue which covers most of the former placenta. The obturator is secretory and produces a surface exudate. We believe our observations on Ornithogalum support the hypothesis that all transmitting tissue is of the same morphological origin and that it provides nutritive and chemotropic factors for pollen tube growth.  相似文献   

17.
Detailed studies were carried out on the phenology, floral biology, pollination ecology and breeding system of Boswellia serrata Roxb. (Burseraceae) the source of 'salai guggul'. The trees remain leafless during the entire period of flowering and fruiting. The inflorescence is a terminal raceme and produces up to 90 bisexual, actinomorphic flowers. On average a flower produces 10 044 ± 1259 starch-filled pollen grains. About 85% of the fresh pollen grains are viable; the pollen to ovule ratio is 3348 : 1. The stigma is of the wet papillate type. The style is hollow with three flattened stylar canals filled with a secretion product. The stylar canals are bordered by a layer of glandular canal cells. The inner tangential wall of the canal cells shows cellulose thickenings. The ovary is trilocular and bears three ovules, one in each locule. Flowers offer nectar and pollen as rewards to floral visitors. The giant Asian honey bee ( Apis dorsata ) and A. cerana var. indica (Indian honey bee) are the effective pollinators. The species is self-incompatible and the selfed pollen tubes are inhibited soon after their entry into the stigma. Self-pollen tubes develop a characteristic 'isthmus' as a result of enlargement of the tube soon after emergence through the narrow germ pore. Cross-pollinated flowers allowed normal pollen germination and pollen tube growth, and resulted in fruit- and seed-set. Under open pollination fruit-set was only about 10%. Although manual cross-pollinations increased fruit set, it was only up to about 20%. Low fruit set appears to be the result of inadequate cross-pollination and other constraints, presumably limitation of available nutrients.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 73–82.  相似文献   

18.
Flowering plants possess specialized extracellular matrices in the female organs of the flower that support pollen tube growth and sperm cell transfer along the transmitting tract of the gynoecium. Transport of the pollen tube cell and the sperm cells involves a cell adhesion and migration event in species such as lily that possess a transmitting tract epidermis in the stigma, style, and ovary. A bioassay for adhesion was used to isolate from the lily stigma/stylar exudate the components that are responsible for in vivo pollen tube adhesion. At least two stylar components are necessary for adhesion: a large molecule and a small (9 kD) protein. In combination, the two molecules induced adhesion of pollen tubes to an artificial stylar matrix in vitro. The 9-kD protein was purified, and its corresponding cDNA was cloned. This molecule shares some similarity with plant lipid transfer proteins. Immunolocalization data support its role in facilitating adhesion of pollen tubes to the stylar transmitting tract epidermis.  相似文献   

19.
Pollen tube cells adhere to the wall surface of the stylar transmitting tract epidermis in lily. This adhesion has been proposed as essential for the proper delivery of the sperm cells to the ovule. An in vitro adhesion bioassay has been used to isolate two stylar molecules required for lily pollen tube adhesion. The first molecule was determined to be a small, cysteine-rich protein with some sequence similarity to lipid transfer proteins and now called stigma/stylar cysteine-rich adhesin (SCA). The second, larger, molecule has now been purified from style fragments and characterized. Chemical composition, specific enzyme degradations, and immunolabeling data support the idea that this molecule required for pollen tube adhesion is a pectic polysaccharide. In vitro binding assays revealed that this lily stylar adhesive pectin and SCA are able to bind to each other in a pH-dependent manner.  相似文献   

20.
The structure of the gynoecium and pollen tube pathway in unpollinated and pollinated carpels of Asclepias exaltata L. has been characterized. Pollen tubes penetrate a dry-type stigma, grow intercellularly in a core of solid tissue in the upper style, and subsequently traverse a hollow stylar canal to the ovary where they grow across the placental epithelium to the ovule micropyles. The fine structural characteristics of transmitting cells of the solid style, stylar canal, and placental epithelium indicate a secretory function. Extracellular secretions staining positively for proteins, insoluble carbohydrates, and arabinogalactans/arabinogalactan proteins are present in the solid style, hollow stylar canal, ovary, and micropyle. Micropylar exudate is present subtending the extended cuticle of the embryo sac adjacent to the filiform apparatus of the synergids, providing ultrastructural evidence for a secretion arising from the angiosperm embryo sac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号