首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
瘦素抵抗是人类肥胖症的主要危险因素,高瘦素水平未能抑制摄食和减轻体重,导致机体能量调节失衡。自噬是一种细胞质量控制机制,可对细胞内物质进行周转。许多人类重大疾病的发生与自噬过程有关,如肥胖症、糖尿病和神经退行性疾病等。当细胞自噬出现障碍即自噬缺陷时,会导致机体发生瘦素抵抗。研究发现,运动是维持细胞稳态的自噬有效诱导剂,机体瘦素敏感性的提高可能与运动促进细胞自噬有关,但目前尚缺乏直接证据。  相似文献   

3.
随着代谢综合症在世界范围内的广为流行,已经引起人们的高度重视.代谢综合征以肥胖和代谢异常为特征,胰岛素抵抗为主要的病理机制.瘦素主要来源于脂肪组织,是调节体内脂肪储量和维持能量平衡的一种内分泌激素.瘦素缺乏和瘦素抵抗不仅可以直接引起胰岛素抵抗,而且可以通过导致肥胖继而参与胰岛素抵抗的发生,最终引起代谢综合征.瘦素作为一种新的代谢综合征致病因子,参与代谢综合征的发生发展,故调节瘦素水平为临床治疗代谢综合症提供了新的思路和方法.本文综述了瘦素水平与代谢综合症的关系,以及调节瘦素水平治疗代谢综合征的方法.  相似文献   

4.
瘦素(leptin)是OB基因的编码产物,由脂肪细胞分泌,具有广泛的生理学功能.瘦素可通过作用于中枢神经系统与外周组织等途径在糖脂代谢调控、能量代谢、生殖发育及免疫调节过程中起重要作用.不同剂量、不同作用时间,也可导致瘦素产生不同的生理学作用.近年来,随着肥胖及糖尿病在全球范围内成为流行病,瘦素在糖脂代谢中的调控作用引起了人们的广泛关注.现有的研究已发现,瘦素抵抗与胰岛素抵抗之间具有重要的关联性,揭示瘦素功能异常在肥胖诱发的糖脂代谢紊乱过程中起着重要的作用.本文将对瘦素在机体糖脂代谢中的调控作用进行综述和讨论.  相似文献   

5.
儿童单纯肥胖症血清瘦素、脂联素相关性研究及意义   总被引:1,自引:0,他引:1  
目的:检测单纯肥胖症患儿血清中瘦素、脂联素水平,评价其临床意义.方法:依据儿童单纯肥胖症诊断标准选取40名患儿,男女各20名,选取20名年龄、性别类同的健康儿童作为对照组.应用ELISA法检测患儿血清瘦素及脂联素水平,与健康儿童进行比较及男女两组之间比较.结果:与对照组相比,患儿血清脂联素水平降低,瘦素水平升高,差异有统计学意义(P<0.05),男女两组比较,差异无统计学意义(P>0.05).结论:肥胖症儿童脂联素、瘦素水平的变化与儿童肥胖症发病密切相关,对儿童肥胖症的发展趋势及预后判断有一定意义,脂联素、瘦素素水平是肥胖发生的预测指标.  相似文献   

6.
瘦素(leptin)的生理作用很多,其对骨代谢的影响可以通过中枢和外周两个机制来实现.运动可以影响人体骨代谢,但运动后血清瘦素水平的变化不一,可能是因为瘦素可以通过多种下丘脑-垂体轴途径影响骨代谢,如下丘脑-垂体-肾上腺轴、下丘脑-垂体-甲状腺轴、下丘脑-垂体-生长激素轴等等,各途径作用结果不一致,致使不同的运动形式对瘦素的影响不同.本文对运动后瘦素水平改变及其对骨代谢的作用予以综述.  相似文献   

7.
瘦素受体的研究进展   总被引:29,自引:0,他引:29  
Wu J  Zou DJ 《生理科学进展》2000,31(2):143-146
瘦素的体重调节作用是通过瘦素受体介导的。随着分子生物学技术的发展,已以受体的基因表达、结构、功能等方面取得了一些进展。肥胖患者常合并高胰岛素血症、胰岛素抵抗和瘦素抵抗,说明瘦素受体与肥胖及其相关疾病有着不可分割的联系。  相似文献   

8.
肥胖是近年主要的流行病之一,是危害健康的全球公共卫生问题。肥胖是一种慢性低度全身性炎症,伴随着一些炎性细胞的浸润和改变,并存在脂肪细胞因子分泌紊乱。瘦素是由白色脂肪细胞分泌的一种蛋白类激素,也是促炎细胞因子,在调控体内能量与代谢等方面发挥重要作用。运动干预会使肥胖机体体内促炎因子(瘦素、TNF-α、IL-6)水平含量降低,抗炎因子(脂联素)水平含量升高。运动能够延缓肥胖机体体内炎症反应的发生。本文以体内瘦素的生理功能及作用机制为中心,系统综述了运动对肥胖性慢性炎症的调节,主要包括脂肪细胞因子瘦素、脂联素、IL-6、TNF-α,以此探讨运动干预减重降脂和减轻慢性炎症反应的机制,为防治慢性代谢性疾病提供新视角。  相似文献   

9.
Levin提出饮食诱导肥胖(DIO)与饮食诱导肥胖抵抗(DIO-R)的概念后,其发生机制受到了广泛关注。现代研究认为脂肪组织除了能调节能量代谢外,还可以分泌多种细胞因子,如瘦素、脂联素、肿瘤坏死因子-α(TNF-α)和抵抗素等。在已发现的脂肪细胞因子中,瘦素、TNF-α和脂联素等与肥胖的发生密切关联。DIO大鼠血清瘦素水平比DIO-R大鼠高,DIO大鼠瘦素敏感性降低,发生了瘦素抵抗。DIO小鼠血浆脂联素水平比DIO-R小鼠低。DIO组TNF-α水平明显高于DIO-R组。  相似文献   

10.
非酒精性脂肪性肝病大鼠肝组织瘦素受体表达的变化   总被引:5,自引:0,他引:5  
目的检测高脂饮食诱发的非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)大鼠肝组织瘦素受体的表达,探讨NAFLD瘦素抵抗的发生机制及瘦素抵抗在NAFLD发病中的作用.方法采用高脂饮食制备Wistar大鼠NAFLD模型;ELISA法测定大鼠血清瘦素(leptin,LP)浓度;全自动生化分析仪测血清甘油三酯(triglyceride,TG)、空腹血糖(fasting blood glucose,FBG),比色法测游离脂肪酸(free fatty acid,FFA),放射免疫法测空腹血清胰岛素(fasting insulin,FINS),计算空腹状态下胰岛素抵抗指数;对肝组织分别进行HE染色、苏丹Ⅳ染色、瘦素受体免疫组化染色,并进行半定量分析.利用SAS 8.0统计软件处理实验数据.结果模型组大鼠肝组织瘦素受体表达比正常组明显减弱,且与血清瘦素浓度、游离脂肪酸、胰岛素敏感指数、肝细胞脂变、炎症活动度显著负相关,相关系数分别为r = -0.83,-0.71, -0.65,-0.83, -0.87.多元线性回归分析显示,瘦素受体表达减弱是肝脂变的独立影响因素.结论肝组织瘦素受体表达减弱是NAFLD瘦素抵抗的重要病理机制之一,瘦素抵抗与胰岛素抵抗相互作用,共同促进了脂肪肝的发生发展.  相似文献   

11.
PTP1B regulates leptin signal transduction in vivo   总被引:15,自引:0,他引:15  
Mice lacking the protein-tyrosine phosphatase PTP1B are hypersensitive to insulin and resistant to obesity. However, the molecular basis for resistance to obesity has been unclear. Here we show that PTP1B regulates leptin signaling. In transfection studies, PTP1B dephosphorylates the leptin receptor-associated kinase, Jak2. PTP1B is expressed in hypothalamic regions harboring leptin-responsive neurons. Compared to wild-type littermates, PTP1B(-/-) mice have decreased leptin/body fat ratios, leptin hypersensitivity, and enhanced leptin-induced hypothalamic Stat3 tyrosyl phosphorylation. Gold thioglucose treatment, which ablates leptin-responsive hypothalamic neurons, partially overcomes resistance to obesity in PTP1B(-/-) mice. Our data indicate that PTP1B regulates leptin signaling in vivo, likely by targeting Jak2. PTP1B may be a novel target to treat leptin resistance in obesity.  相似文献   

12.
13.
Skeletal muscle resistance to the key metabolic hormones, leptin and insulin, is an early defect in obesity. Suppressor of cytokine signaling 3 (SOCS3) is a major negative regulator of both leptin and insulin signaling, thereby implicating SOCS3 in the pathogenesis of obesity and associated metabolic abnormalities. Here, we demonstrate that SOCS3 mRNA expression is increased in murine skeletal muscle in the setting of diet-induced and genetic obesity, inflammation, and hyperlipidemia. To further evaluate the contribution of muscle SOCS3 to leptin and insulin resistance in obesity, we generated transgenic mice with muscle-specific overexpression of SOCS3 (MCK/SOCS3 mice). Despite similar body weight, MCK/SOCS3 mice develop impaired systemic and muscle-specific glucose homeostasis and insulin action based on glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, and insulin signaling studies. With regards to leptin action, MCK/SOCS3 mice exhibit suppressed basal and leptin-stimulated activity and phosphorylation of alpha2 AMP-activated protein kinase (α2AMPK) and its downstream target, acetyl-CoA carboxylase (ACC). Muscle SOCS3 overexpression also suppresses leptin-regulated genes involved in fatty acid oxidation and mitochondrial function. These studies demonstrate that SOC3 within skeletal muscle is a critical regulator of leptin and insulin action and that increased SOCS may mediate insulin and leptin resistance in obesity.  相似文献   

14.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B in the development of aging-associated obesity, inflammation, and peripheral insulin resistance by assessing metabolic parameters at 3 and 16 months in PTP1B(-/-) mice maintained on mixed genetic background (C57Bl/6J × 129Sv/J). Whereas fat mass and adipocyte size were increased in wild-type control mice at 16 months, these parameters did not change with aging in PTP1B(-/-) mice. Increased levels of pro-inflammatory cytokines, crown-like structures, and hypoxia-inducible factor (HIF)-1α were observed only in adipose tissue from 16-month-old wild-type mice. Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with aging-associated obesity, but not in PTP1B(-/-) animals. Leanness in 16-month-old PTP1B(-/-) mice was associated with increased energy expenditure. Whole-body insulin sensitivity decreased in 16-month-old control mice; however, studies with the hyperinsulinemic-euglycemic clamp revealed that PTP1B deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a molecular level, PTP1B expression and enzymatic activity were up-regulated in liver and muscle of 16-month-old wild-type mice as were the activation of stress kinases and the expression of p53. Conversely, insulin receptor-mediated Akt/Foxo1 signaling was attenuated in these aged control mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin resistance associated with obesity during aging and suggest that inhibition of this phosphatase by therapeutic strategies might protect against age-dependent T2DM.  相似文献   

15.
Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency alone is not able to prevent insulin resistance induced by a diet rich in fat.  相似文献   

16.
Leptin   总被引:39,自引:0,他引:39  
Leptin is an adipocyte hormone that signals nutritional status to the central nervous system (CNS) and peripheral organs. Leptin is also synthetized in the placenta and in gastrointestinal tract, although its role in these tissues is not yet clear. Circulating concentrations of leptin exhibit pulsatility and circadian rhythmicity. The levels of plasma leptin vary directly with body mass index and percentage body fat, and leptin contributes to the regulation of body weight. Leptin plasma concentrations are also influenced by metabolic hormones, sex, and body energy requirements. Defects in the leptin signaling pathway result in obesity in animal models. Only a few obese humans have been identified with mutations in the leptin gene or in the leptin receptor; however, most cases of obesity in humans are associated with high leptin levels. Thus, in humans obesity may represent a state of leptin resistance. Minute-to-minute fluctuations in peripheral leptin concentrations influence the activity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes, indicating that leptin may be a modulator of reproduction, stress-related endocrine function, and behavior. This suggests potential roles for leptin or its antagonists in the diagnosis, pathophysiology and treatment of several human diseases.  相似文献   

17.
Zhang X  Zhang G  Zhang H  Karin M  Bai H  Cai D 《Cell》2008,135(1):61-73
Overnutrition is associated with chronic inflammation in metabolic tissues. Whether metabolic inflammation compromises the neural regulatory systems and therefore promotes overnutrition-associated diseases remains unexplored. Here we show that a mediator of metabolic inflammation, IKKbeta/NF-kappaB, normally remains inactive although enriched in hypothalamic neurons. Overnutrition atypically activates hypothalamic IKKbeta/NF-kappaB at least in part through elevated endoplasmic reticulum stress in the hypothalamus. While forced activation of hypothalamic IKKbeta/NF-kappaB interrupts central insulin/leptin signaling and actions, site- or cell-specific suppression of IKKbeta either broadly across the brain or locally within the mediobasal hypothalamus, or specifically in hypothalamic AGRP neurons significantly protects against obesity and glucose intolerance. The molecular mechanisms involved include regulation by IKKbeta/NF-kappaB of SOCS3, a core inhibitor of insulin and leptin signaling. Our results show that the hypothalamic IKKbeta/NF-kappaB program is a general neural mechanism for energy imbalance underlying obesity and suggest that suppressing hypothalamic IKKbeta/NF-kappaB may represent a strategy to combat obesity and related diseases.  相似文献   

18.
In obesity, anorectic responses to leptin are diminished, giving rise to the concept of "leptin resistance." Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high-fat-diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity.  相似文献   

19.
Common obesity is primarily characterized by resistance to the actions of the hormone leptin. Mice deficient in protein tyrosine phosphatase 1B (PTP1B) are resistant to diabetes and diet-induced obesity, prompting us to further define the relationship between PTP1B and leptin in modulating obesity. Leptin-deficient (Lep(ob/ob)) mice lacking PTP1B exhibit an attenuated weight gain, a decrease in adipose tissue, and an increase in resting metabolic rate. Furthermore, PTP1B-deficient mice show an enhanced response toward leptin-mediated weight loss and suppression of feeding. Hypothalami from these mice also display markedly increased leptin-induced Stat3 phosphorylation. Finally, substrate-trapping experiments demonstrate that leptin-activated Jak2, but not Stat3 or the leptin receptor, is a substrate of PTP1B. These results suggest that PTP1B negatively regulates leptin signaling, and provide one mechanism by which it may regulate obesity.  相似文献   

20.
Trodusquemine (MSI‐1436) causes rapid and reversible weight loss in genetic models of obesity. To better predict the potential effects of trodusquemine in the clinic, we investigated the effects of trodusquemine treatment in a murine model of diet‐induced obesity (DIO). Trodusquemine suppressed appetite, reduced body weight (BW) in a fat‐specific manner, and improved plasma insulin and leptin levels in mice. Screening assays revealed that trodusquemine selectively inhibited protein‐tyrosine phosphatase 1B (PTP1B), a key enzyme regulating insulin and leptin signaling. Trodusquemine significantly enhanced insulin‐stimulated tyrosine phosphorylation of insulin receptor (IR) β and STAT3, direct targets of PTP1B, in HepG2 cells in vitro and/or hypothalamic tissue in vivo. These data establish trodusquemine as an effective central and peripheral PTP1B inhibitor with the potential to elicit noncachectic fat‐specific weight loss and improve insulin and leptin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号