首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的:从大容量噬菌体抗体库中筛选人源性抗呼吸道合胞病毒F蛋白的单链抗体。方法:以RSV F蛋白为靶抗原,通过“吸附-洗涤-洗脱-扩增”过程从天然人源性噬菌体抗体库中筛选特异性抗F蛋白单链抗体。5轮筛选后,单克隆经ELISA检测,阳性克隆进行核酸序列分析,并将阳性克隆噬菌体感染E.coli HB2151,经IPTG诱导,制备抗RSV F蛋白的可溶性单链抗体,并进行Western及Dot blot分析。结果:经过筛选,获得了18株能与F蛋白特异性结合的阳性克隆,取OD值最高的克隆E4经测序并检索Kabat数据库分析,显示其基因与人免疫球蛋白可变区基因具有高度同源性,Western及Dot blot分析表明为单链抗体。结论:利用天然人源性噬菌体抗体库技术制备出高特异性的人源性抗RSV F蛋白单链抗体。  相似文献   

2.
目的:从天然的大容量噬菌体抗体库中筛选特异的抗结核分枝杆菌晶体蛋白( alpha-crystallin Acr)的人源抗体.方法:以结核分枝杆菌Acr蛋白包被免疫管,通过对噬菌体抗体库进行4轮“吸附-洗脱-扩增”的过程从大容量抗体库中筛选特异性抗结核分枝杆菌Acr蛋白的抗体,并对可变区序列进行了测序分析.将特异性的噬菌体抗体感染HB2151菌,经IPTG诱导表达,制备了抗结核分枝杆菌Acr蛋白的可溶性单链抗体;对其序列和抗原结合活性进行分析鉴定.结果:经过4轮筛选,获得了43个与结核分枝杆菌Acr蛋白结合的阳性克隆,其中29个特异结合的克隆;测序分析有26不同的可变区片段;通过可溶性单链抗体(scFv)表达筛选到14株特异性结合Acr蛋白的可溶性单链抗体克隆;经过基因测序,分析了可变区基因的亚群.成功制备了可溶性单链抗体.Westren blotting分析证实筛选的人源单链抗体能与天然蛋白结合.结论:利用单链大容量抗体库获得抗结核分枝杆菌Acr蛋白的噬菌体抗体并且成功制备抗结核分枝杆菌Acr天然蛋白的可溶性单链抗体,为今后的研究和应用奠定基础.  相似文献   

3.
A prerequisite for the enrichment of antibodies screened from phage display libraries is their stable expression on a phage during multiple selection rounds. Thus, if stringent panning procedures are employed, selection is simultaneously driven by antigen affinity, stability and solubility. To take advantage of robust pre-selected scaffolds of such molecules, we grafted single-chain Fv (scFv) antibodies, previously isolated from a human phage display library after multiple rounds of in vitro panning on tumor cells, with the specificity of the clinically established murine monoclonal anti-CD22 antibody RFB4. We show that a panel of grafted scFvs retained the specificity of the murine monoclonal antibody, bound to the target antigen with high affinity (6.4-9.6 nM), and exhibited exceptional biophysical stability with retention of 89-93% of the initial binding activity after 6 days of incubation in human serum at 37 degrees C. Selection of stable human scaffolds with high sequence identity to both the human germline and the rodent frameworks required only a small number of murine residues to be retained within the human frameworks in order to maintain the structural integrity of the antigen binding site. We expect this approach may be applicable for the rapid generation of highly stable humanized antibodies with low immunogenic potential.  相似文献   

4.
The aim of this study was to construct a ribosome display library of single chain variable fragments (scFvs) associated with hepatocarcinoma and screen such a library for hepatocarcinoma-binding scFvs. mRNA was isolated from the spleens of mice immunized with hepatocellular carcinoma cell line HepG2. Heavy and k chain genes (VH and k) were amplified separately by RT-PCR, and an anti-HepG2 VH/k chain ribosome display library was constructed by assembling VH and k into the VH/k chain with a specially constructed linker by SOE-PCR. The VH/k chain library was transcribed and translated in vitro using a rabbit reticulocyte lysate system. In order to isolate specific scFvs, recognizing HepG2 negative selection on a normal hepatocyte line WRL-68 was carried out before three rounds of positive selection on HepG2. After three rounds of panning, cell enzyme-linked immunosorbent assay (ELISA) showed that one of the scFvs had high affinity for the HepG2 cell and lower affinity for the WRL-68 cell. In this study, we successfully constructed a native ribosome display library. Such a library would prove useful for direct intact cell panning using ribosome display technology. The selected scFv had a potential value for hepatocarcinoma treatment.  相似文献   

5.
Here we applied ribosome display to in vitro selection and evolution of single-chain antibody fragments (scFvs) from a large synthetic library (Human Combinatorial Antibody Library; HuCAL) against bovine insulin. In three independent ribosome display experiments different clusters of closely related scFvs were selected, all of which bound the antigen with high affinity and specificity. All selected scFvs had affinity-matured up to 40-fold compared to their HuCAL progenitors, by accumulating point mutations during the ribosome display cycles. The dissociation constants of the isolated scFvs were as low as 82 pM, which validates the design of the na?ve library and the power of this evolutionary method. We have thus mimicked the process of antibody generation and affinity maturation with a synthetic library in a cell-free system in just a few days, obtaining molecules with higher affinities than most natural antibodies.  相似文献   

6.
Existing antifungal drugs are notable for their inability to act rapidly, as well as their toxicity and limited spectrum. The identification of fungal-specific genes and virulence factors would provide targets for new and influential drugs. The display of repertories of antibody fragments on the surface of filamentous phage offers a new way to produce immunoreagents as defined specificities. Here we report the selection of Cryptococcus-specific targets by using phage-display panning from a cDNA library, where bactericidal antibodies have been developed against conserved surface-exposed antigens. A single-chain variable fragment (scFv) phage library was constructed from splenocyte of an immunized mouse by idiotypic vaccination with HM-1 killer toxin (HM-1) neutralizing monoclonal antibody (nmAb-KT) that was used for selection against Cryptococcus neoformans membrane fraction (CnMF). Key elements were the selection against antigen (nmAb-KT and CnMF) and the release of bound phages using competitive panning elution with CnMF at neutral pH condition. Isolated scFvs react specifically with C. neoformans and some other pathogenic and non-pathogenic fungal strain's cell wall receptors by exerting strong antifungal activity in vitro. A high affinity clone, designated M1 was selected for detailed characterization and tested anti-cryptococcal activity with IC(50) values at 5.33 × 10(-7) to 5.56 × 10(-7) M against C. neoformans. The method described here is a new technique for the isolation of cell membrane specific immunoreactive phages in the form of scFv using CnMF that contained cell membrane associated proteins.  相似文献   

7.

Background

Ribosome display technology has provided an alternative platform technology for the development of novel low-cost antibody based on evaluating antibiotics derived residues in food matrixes.

Methodology/Principal Findings

In our current studies, the single chain variable fragments (scFvs) were selected from hybridoma cell lines against sulfadimidine (SM2) by using a ribosome library technology. A DNA library of scFv antibody fragments was constructed for ribosome display, and then mRNA–ribosome–antibody (MRA) complexes were produced by a rabbit reticulocyte lysate system. The synthetic sulfadimidine-ovalbumin (SM2-OVA) was used as an antigen to pan MRA complexes and putative scFv-encoding genes were recovered by RT-PCR in situ following each panning. After four rounds of ribosome display, the expression vector pCANTAB5E containing the selected specific scFv DNA was constructed and transformed into Escherichia coli HB2151. Three positive clones (SAS14, SAS68 and SAS71) were screened from 100 clones and had higher antibody activity and specificity to SM2 by indirect ELISA. The three specific soluble scFvs were identified to be the same molecular weight (approximately 30 kDa) by Western-blotting analysis using anti-E tag antibodies, but they had different amino acids sequence by sequence analysis.

Conclusions/Significance

The selection of anti-SM2 specific scFv by in vitro ribosome display technology will have an important significance for the development of novel immunodetection strategies for residual veterinary drugs.  相似文献   

8.
Synthetic DNA libraries encoding human antibody VL and VH fragments were designed, constructed, and enriched using mRNA display. The enriched libraries were then combined to construct a scFv library for mRNA display. Sequencing revealed that 46% of the library coded for full-length scFvs. Considering the number of molecules used in mRNA display, the size of the library displayed was calculated to be >1010. To verify this, we tried to isolate a scFv against human RANK. A scFv was successfully isolated in the sixth round of panning and was synthesized in wheat embryo cell-free (WE) and Escherichia coli cell systems. In the WE system, even though the production level was high, the product was almost soluble. However, in the E. coli system, it was over-produced as inclusion bodies. The inclusion bodies were successfully refolded and showed approximately the same binding affinity as the WE product. These results demonstrate that using mRNA display with synthetic libraries and WE and E. coli cell production systems, a system for in vitro selection and small- to large-scale production of scFvs has been established.  相似文献   

9.
10.
The development of conformation-sensitive antibody domains targeting the misfolding beta amyloid (Aβ) peptide is of great interest for research into Alzheimer's disease (AD).We describe the direct selection, by the Intracellular Antibody Capture Technology (IACT), of a panel of anti-Aβ single chain Fv antibody fragments (scFvs), targeting pathologically relevant conformations of Aβ. A LexA-Aβ1-42 fusion protein was expressed in yeast cells, as the “intracellular antigen”. Two different scFv antibody libraries (Single Pot Libraries of Intracellular Antibodies, SPLINT) were used for the intracellular selections: (i) a naïve library, derived from a natural, non-immune, source of mouse antibody variable region (V) genes; and (ii) an immune library constructed from the repertoire of antibody V genes of Aβ-immunized mice. This led to the isolation of 18 different anti-Aβ scFvs, which bind Aβ both in the yeast cell, as well as in vitro, if used as purified recombinant proteins. Surprisingly, all the anti-Aβ scFvs isolated are conformation-sensitive, showing a high degree of specificity towards Aβ oligomers with respect to monomeric Aβ, while also displaying some degree of sequence-specificity, recognizing either the N-terminal or the C-terminal part of Aβ1-42; in particular, the scFvs selected from Aβ-immune SPLINT library show a relevant N-terminal epitope bias. Representative candidates from this panel of the anti-Aβ scFvs were shown to recognize in vivo-produced Aβ “deposits” in histological sections from human AD brains and to display good neutralization properties, significantly inhibiting Aβ oligomer-induced toxicity and synaptic binding of Aβ oligomers in neuronal cultured cells. The properties of these anti-Aβ antibody domains, as well as their direct availability for intra- or extra-cellular “genetic delivery” make them ideally suited for new experimental approaches to study and image the intracellular processing and trafficking of Aβ oligomers.  相似文献   

11.
Recent in vitro methodologies for selection and directed evolution of proteins have concentrated not only on proteins with affinity such as single-chain antibody but also on enzymes. We developed a display technology for selection of T4 DNA ligase on ribosome because an in vitro selection method for DNA ligase had never been developed. The 3' end of mRNA encoding the gene of active or inactive T4 DNA ligase-spacer peptide fusion protein was hybridized to dsDNA fragments with cohesive ends, the substrate of T4 DNA ligase. After in vitro translation of the mRNA-dsDNA complex in a rabbit reticulocyte system, a mRNA-dsDNA-ribosome-ligase complex was produced. T4 DNA ligase enzyme displayed on a ribosome, through addition of a spacer peptide, is able to react with dsDNA in the complex. The complex expressing active ligase was biotinylated by ligation with another biotinylated dsDNA probe and selected with streptavidin-coated magnetic beads. We effectively selected active T4 DNA ligase from a small amount of protein. The gene of the active T4 DNA ligase was enriched 40 times from a mixture of active and inactive genes using this selection strategy. This ribosomal display strategy may have high potential to be useful for selection of other enzymes associated with DNA.  相似文献   

12.
We have developed a method that allows the rapid improvement of the affinity of phage-displayed antibody fragments by selection on intact eukaryotic cells. A single chain Fv fragment, specific for the tumor-associated Ep-Cam molecule, was mutagenized by shuffling of the immunoglobulin light chain variable region and DNA shuffling of both heavy and light chain variable regions. Higher-affinity mutants were selected from small phage display libraries by cell panning under stringent conditions. When converted to an intact fully human antibody, the mutagenized anti-tumor monoclonal antibody displayed an affinity of 0.4 nM, a 15-fold improvement over the affinity of the original antibody. Compared to previously reported affinity maturation schemes, panning on intact cells does not require purified targets for selection and may be particularly useful when the target molecule can not be expressed as a recombinant molecule or easily purified without disrupting its native configuration. In vitro tumor cell killing assays demonstrated an improved performance of the higher-affinity antibody in complement-mediated tumor cell killing. In contrast, the lower-affinity antibody performed somewhat better in antibody-dependent cellular cytotoxicity assays and penetrated better in multicell spheroids of tumor cells, an in vitro model for the tumor penetration capacity of antibodies. Received: 26 February 2000 / Accepted: 26 January 2001  相似文献   

13.
The functional decryption of the human proteome is the challenge which follows the sequencing of the human genome. Specific binders to every human protein are key reagents for this purpose. In vitro antibody selection using phage display offers one possible solution that can meet the demand for 25,000 or more antibodies, but needs substantial standardisation and minimalisation. To evaluate this potential, three human, naive antibody gene libraries (HAL4/7/8) were constructed and a standardised antibody selection pipeline was set up. The quality of the libraries and the selection pipeline was validated with 110 antigens, including human, other mammalian, fungal or bacterial proteins, viruses or haptens. Furthermore, the abundance of VH, kappa and lambda subfamilies during library cloning and the E. coli based phage display system on library packaging and the selection of scFvs was evaluated from the analysis of 435 individual antibodies, resulting in the first comprehensive comparison of V gene subfamily use for all steps of an antibody phage display pipeline. Further, a compatible cassette vector set for E. coli and mammalian expression of antibody fragments is described, allowing in vivo biotinylation, enzyme fusion and Fc fusion.  相似文献   

14.
15.
We describe a novel approach for high-throughput screening of recombinant antibodies, based on their immobilization on solid cellulose-based supports. We constructed a large human synthetic single-chain Fv antibody library where in vivo formed complementarity determining regions were shuffled combinatorially onto germline-derived human variable-region frameworks. The arraying of library-derived scFvs was facilitated by our unique display/expression system, where scFvs are expressed as fusion proteins with a cellulose-binding domain (CBD). Escherichia coli cells expressing library-derived scFv-CBDs are grown on a porous master filter on top of a second cellulose-based filter that captures the antibodies secreted by the bacteria. The cellulose filter is probed with labeled antigen allowing the identification of specific binders and the recovery of the original bacterial clones from the master filter. These filters may be simultaneously probed with a number of antigens allowing the isolation of a number of binding specificities and the validation of specificity of binders. We screened the library against a number of cancer-related peptides, proteins, and peptide-protein complexes and yielded antibody fragments exhibiting dissociation constants in the low nanomolar range. We expect our new antibody phage library to become a valuable source of antibodies to many different targets, and to play a vital role in facilitating high-throughput target discovery and validation in the area of functional cancer genomics.  相似文献   

16.
Intrabodies, when expressed in cells after genetic fusion to fluorescent proteins, are powerful tools to study endogenous protein dynamics inside cells. However, it remains challenging to determine the conditions for specific imaging and precise labelling of the target antigen with such intracellularly expressed antibody fragments. Here, we show that single‐chain Fv (scFv) antibody fragments can be generated that specifically recognize proliferating cell nuclear antigen (PCNA) when expressed in living cancer cells. After selection by phage display, the anti‐PCNA scFvs were screened in vitro after being tagged with dimeric glutathione‐S‐transferase. Anti‐PCNA scFvs of increased avidity were further engineered by mutagenesis with sodium bisulfite and error‐prone PCR, such that they were almost equivalent to conventional antibodies in in vitro assays. These intrabodies were then rendered bifunctional by fusion to a C‐terminal fragment of p21 protein and could thereby readily detect PCNA bound to chromatin in cells. Finally, by linking these optimized peptide‐conjugated scFvs to an enhanced green fluorescent protein, fluorescent intrabody‐based reagents were obtained that allowed the fate of PCNA in living cells to be examined. The approach described may be applicable to other scFvs that can be solubly expressed in cells, and it provides a unique means to recognize endogenous proteins in living cells with high accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 1011 TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0–5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.  相似文献   

18.
Epitope mapping with mono- or polyclonal antibodies has so far been done either by dissecting the antigens into overlapping polypeptides in the form of recombinantly expressed fusion proteins, or by synthesizing overlapping short peptides, or by a combination of both methods. Here, we report an alternative method which involves the generation of random gene fragments of approximately 50–200 by in length and cloning these into the 5 terminus of the protein III gene of fd phages. Selection for phages that bind a given monoclonal antibody and sequencing the DNA inserts of immunopositive phages yields derived amino acid sequences containing the desired epitope. A monoclonal antibody (mAb 215) directed against the largest subunit of Drosophila RNA polymerase II (RPB215) was used to map the corresponding epitope in a fUSE5 phage display library made of random DNA fragments from plasmid DNA containing the entire gene. After a single round of panning with this phage library, bacterial colonies were obtained which produced fd phages displaying the mAb 215 epitope. Sequencing of single-stranded phage DNA from a number of positive colonies (recognized by the antibody on colony immunoblots) resulted in overlapping sequences all containing the 15mer epitope determined by mapping with synthetic peptides. Similarly, we have localized the epitopes recognized by a mouse monoclonal antibody directed against the human p53 protein, and by a mouse monoclonal antibody directed against the human cytokeratin 19 protein. Identification of positive colonies after the panning procedure depends on the detection system used (colony immunoblot or ELISA) and there appear to be some restrictions to the use of linker-encoded amino acids for optimal presentation of epitopes. A comparison with epitope mapping by synthetic peptides shows that the phage display method allows one to map linear epitopes down to a size only slightly larger than the true epitope. In general, our phage display method is faster, easier, and cheaper than the construction of overlapping fusion proteins or the use of synthetic peptides, especially in cases where the antigen is a large polypeptide such as the 215 kDa subunit of eukaryotic RNA polymerase II.  相似文献   

19.
Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs) using the split green fluorescent protein (GFP) system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11), is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems.  相似文献   

20.
Combinatory antibody library display technologies have been invented and successfully implemented for the selection and engineering of therapeutic antibodies. Precise targeting of important epitopes on the protein of interest is essential for such isolated antibodies to serve as effective modulators of molecular interactions. We developed a strategy to efficiently isolate antibodies against a specific epitope on a target protein from a yeast display antibody library using dengue virus envelope protein domain III as a model target. A domain III mutant protein with a key mutation inside a cross-reactive neutralizing epitope was designed, expressed, and used in the competitive panning of a yeast display naïve antibody library. All the yeast display antibodies that bound to the wild type domain III but not to the mutant were selectively sorted and characterized. Two unique clones were identified and showed cross-reactive binding to envelope protein domain IIIs from different serotypes. Epitope mapping of one of the antibodies confirmed that its epitope overlapped with the intended neutralizing epitope. This novel approach has implications for many areas of research where the isolation of epitope-specific antibodies is desired, such as selecting antibodies against conserved epitope(s) of viral envelope proteins from a library containing high titer, high affinity non-neutralizing antibodies, and targeting unique epitopes on cancer-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号