首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Sequence variability at three major histocompatibility complex (MHC) genes (DQB, DRA, and MHC-I) of cetaceans was investigated in order to get an overall understanding of cetacean MHC evolution. Little sequence variation was detected at the DRA locus, while extensive and considerable variability were found at the MHC-I and DQB loci. Phylogenetic reconstruction and sequence comparison revealed extensive sharing of identical MHC alleles among different species at the three MHC loci examined. Comparisons of phylogenetic trees for these MHC loci with the trees reconstructed only based on non-PBR sites revealed that allelic similarity/identity possibly reflected common ancestry and were not due to adaptive convergence. At the same time, trans-species evolution was also evidenced that the allelic diversity of the three MHC loci clearly pre-dated species divergence events according to the relaxed molecular clock. It may be the forces of balancing selection acting to maintain the high sequence variability and identical alleles in trans-specific manner at the MHC-I and DQB loci.  相似文献   

2.
The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations.  相似文献   

3.
主要组织相容性复合体(Major histocompatibility complex,MHC) 基因是由一组紧密连锁的基因组成,是哺乳动物免疫系统中最重要的组成部分。本文选择3 个MHC 基因座位的第二外元,即:MHC-I 类基因和II 类基因的DRA 和DQB 座位,初步调查濒危物种中华白海豚的遗传变异。共鉴定了2 个DRA、2 个DQB 和7 MHC-I等位基因。DRA 座位遗传变异非常低,而DQB 和MHC-I 座位具有相对较高水平的遗传变异。并且,在DQB 和MHC-I 基因座位的假定的抗原结合位点(Antigen binding sites,ABS),非同义替代明显大于同义替代,提示平衡选择(Balancing selection)维持这两个座位的多态性,而在DRA 座位上,并没有检测到平衡选择。系统发生分析表明中华白海豚的MHC 等位基因没有聚在一起,而是和其他的物种聚在一起,符合MHC 跨种进化(Transspecies evolution)的模式。  相似文献   

4.
Two DRA alleles and six MHC-I alleles were identified from a group of 15 baiji (Lipotes vexillifer), the most threatened cetacean in the world. Little sequence variation was detected at the DRA locus but extensive variation at the MHC-I locus. In combination with data at the DQB locus previously reported, three MHC loci exon 2 of the baiji all revealed striking similarity with those of the finless porpoise. Especially, some identical alleles shared by both species at the MHC-I and DQB loci suggested the convergent evolution as a consequence of common adaptive solutions to similar environmental pressures in the Yangtze River. As for DRA locus, the identity alleles were shared not only by baiji and finless porpoise but by some other cetacean species of the families Phocoenidae and Delphinidae, suggesting trans-species evolution on this gene.  相似文献   

5.
Class I MHC expression in the yellow baboon   总被引:2,自引:0,他引:2  
MHC class I molecules play a crucial role in the immune response to pathogens and vaccines and in self/non-self recognition. Therefore, characterization of MHC class I gene expression of Papio subspecies is a prerequisite for studies of immunology and transplantation in the baboon (papio hamadryas). To elucidate MHC class I expression and variation within Papio subspecies and to further investigate the evolution of A and B loci in Old World primates, we have characterized the expressed class I repertoire of the yellow baboon (Papio hamadryas cynocephalus) by cDNA library screening. A total of nine distinct MHC class I cDNAs were isolated from a spleen cDNA library. The four A alleles and four B alleles obtained represent four distinct loci indicating that a duplication of the A and B loci has taken place in the lineage leading to these Old World primates. No HLA--C homologue/orthologue was found. In addition a single, nonclassical homologue of HLA--E was characterized. Examination of nucleotide and extrapolated protein sequences indicates that alleles at the two B loci are much more diversified than the alleles at the A loci. One of the A loci in particular appears to display very limited polymorphism in both Papio hamadryas cynocephalus and Papio hamadryas anubis subspecies. The failure to detect a homologue of HLA--C in the baboon provides additional evidence for the more recent origin of this locus in the pongidae and hominidae: Further comparative analysis with MHC sequences among the primate species reveals specific patterns of divergence and conservation within class I molecules of the yellow baboon.  相似文献   

6.
Cutrera AP  Lacey EA 《Immunogenetics》2007,59(12):937-948
Balancing selection acting over the evolutionary history of a lineage can result in the retention of alleles among species for longer than expected under neutral evolution. The associated pattern of trans-species polymorphism, in which similar or even identical alleles are shared among species, is often used to infer that balancing selection has occurred. The genes of the major histocompatibility complex (MHC) are thought to be subject to balancing selection that maintains alleles associated with response to specific pathogens. To explore the role of balancing selection in shaping MHC diversity in ctenomyid rodents, we examined allelic variability at the class II DRB and DQA loci in 18 species in the genus Ctenomys. Previous studies of four of these species had revealed significant within-population evidence of positive selection on MHC loci. The current study expands upon these analyses to (1) evaluate among-species evidence of positive selection and (2) explore the potential for balancing selection on MHC genes. Interspecific nucleotide sequence variation revealed significant evidence of positive selection on the DRB and DQA loci. At the same time, comparisons of phylogenetic trees for these MHC loci with a putative species tree based on mitochondrial sequence data revealed multiple examples of trans-specific polymorphism, including sharing of identical DRB and DQA alleles among distantly related species of Ctenomys. These findings suggest that MHC genes in these animals have historically been subject to balancing selection and yield new insights into the complex suite of forces shaping MHC diversity in free-living vertebrates.  相似文献   

7.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

8.
The European rabbit (Oryctolagus cuniculus) is used as a model for many human diseases, yet comparatively little is known of its genetics, particularly at important loci such as the major histocompatibility complex (MHC). This study investigated genetic diversity and evolutionary history of the DQA gene in a range of leporid species by analysing coding sequence diversity of exon 2 and intron 2 in 53 individuals of 16 different species. Fifty leporid DQA alleles were detected, including 13 novel European rabbit alleles. In the rabbit, the highest levels of diversity were observed in wild rabbits from Portugal, with wild rabbits from England and domestic rabbits showing less diversity. Within the sample, several recombination events were detected and trans-specific evolution of alleles was evidenced, both being general characteristics of mammalian MHC genes. Positive selection is implicated as operating on six codons within exon 2, which are also subject to positive selection in other mammals. Some of these positions are putative antigen recognition sites and underline the importance of pathogen-driven selection on these MHC genes.  相似文献   

9.
With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high‐throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC‐I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per‐individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC‐I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC‐I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC‐I. We conclude that the additional information that can be gained from high‐coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology.  相似文献   

10.
There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.  相似文献   

11.
To understand the evolution of the class II major histocompatibility complex (MHC) DQB1 locus in primates, the second exons of seven DQB1 alleles from five non-human primate species were amplified by polymerase chain reaction. Comparisons of these and other primate sequences show that no between-species diversity is greater than within-species diversity, suggesting maintenance of DQB1 alleles through the history of Old-World primates. There is a preponderance of nonsynonymous nucleotide substitutions at antigen-binding-site codons; this pattern is in marked contrast to what is seen at the closely related, presumably nonfunctional DQB2 gene. The results support the hypothesis that DQB1 polymorphism is maintained by overdominant selection relating to antigen presentation.  相似文献   

12.
The genes of the major histocompatibility complex (MHC) are a central component of the immune system in vertebrates and have become important markers of functional, fitness-related genetic variation. We have investigated the evolutionary processes that generate diversity at MHC class I genes in a large population of an archaic reptile species, the tuatara (Sphenodon punctatus), found on Stephens Island, Cook Strait, New Zealand. We identified at least 2 highly polymorphic (UA type) loci and one locus (UZ) exhibiting low polymorphism. The UZ locus is characterized by low nucleotide diversity and weak balancing selection and may be either a nonclassical class I gene or a pseudogene. In contrast, the UA-type alleles have high nucleotide diversity and show evidence of balancing selection at putative peptide-binding sites. Twenty-one different UA-type genotypes were identified among 26 individuals, suggesting that the Stephens Island population has high levels of MHC class I variation. UA-type allelic diversity is generated by a mixture of point mutation and gene conversion. As has been found in birds and fish, gene conversion obscures the genealogical relationships among alleles and prevents the assignment of alleles to loci. Our results suggest that the molecular mechanisms that underpin MHC evolution in nonmammals make locus-specific amplification impossible in some species.  相似文献   

13.
MHC-dependent CD8(+) T cell responses have been associated with control of viral replication and slower disease progression during lentiviral infections. Pig-tailed macaques (Macaca nemestrina) and rhesus monkeys (Macaca mulatta), two nonhuman primate species commonly used to model HIV infection, can exhibit distinct clinical courses after infection with different primate lentiviruses. As an initial step in assessing the role of MHC class I restricted immune responses to these infections, we have cloned and characterized classical MHC class I genes of pig-tailed macaques and have identified 19 MHC class I alleles (Mane) orthologous to rhesus macaque MHC-A, -B, and -I genes. Both Mane-A and Mane-B loci were found to be duplicated, and no MHC-C locus was detected. Pig-tailed and rhesus macaque MHC-A alleles form two groups, as defined by 14 polymorphisms affecting mainly their B peptide-binding pockets. Furthermore, an analysis of multiple pig-tailed monkeys revealed the existence of three MHC-A haplotypes. The distribution of these haplotypes in various Old World monkeys provides new insights about MHC-A evolution in nonhuman primates. An examination of B and F peptide-binding pockets in rhesus and pig-tailed macaques suggests that their MHC-B molecules present few common peptides to their respective CTLs.  相似文献   

14.
The major histocompatibility complex (MHC) is a cornerstone in the study of adaptive genetic diversity. Intriguingly, highly polymorphic MHC sequences are often not more similar within species than between closely related species. Divergent selection of gene duplicates, balancing selection maintaining trans‐species polymorphism (TSP) that predate speciation and parallel evolution of species sharing similar selection pressures can all lead to higher sequence similarity between species. In contrast, high rates of concerted evolution increase sequence similarity of duplicated loci within species. Assessing these evolutionary models remains difficult as relatedness and ecological similarities are often confounded. As sympatric species of flamingos are more distantly related than allopatric species, flamingos represent an ideal model to disentangle these evolutionary models. We characterized MHC Class I exon 3, Class IIB exon 2 and exon 3 of the six extant flamingo species. We found up to six MHC Class I loci and two MHC Class IIB loci. As all six species shared the same number of MHC Class IIB loci, duplication appears to predate flamingo speciation. However, the high rate of concerted evolution has prevented the divergence of duplicated loci. We found high sequence similarity between all species regardless of codon position. The latter is consistent with balancing selection maintaining TSP, as under this mechanism amino acid sites under pathogen‐mediated selection should be characterized by fewer synonymous codons (due to their common ancestry) than under parallel evolution. Overall, balancing selection maintaining TSP appears to result in high MHC similarity between species regardless of species relatedness and geographical distribution.  相似文献   

15.
Genes of the vertebrate major histocompatibility complex (MHC) are crucial to defense against infectious disease, provide an important measure of functional genetic diversity, and have been implicated in mate choice and kin recognition. As a result, MHC loci have been characterized for a number of vertebrate species, especially mammals; however, elephants are a notable exception. Our study is the first to characterize patterns of genetic diversity and natural selection in the elephant MHC. We did so using DNA sequences from a single, expressed DQA locus in elephants. We characterized six alleles in 30 African elephants (Loxodonta africana) and four alleles in three Asian elephants (Elephas maximus). In addition, for two of the African alleles and three of the Asian alleles, we characterized complete coding sequences (exons 1–5) and nearly complete non-coding sequences (introns 2–4) for the class II DQA loci. Compared to DQA in other wild mammals, we found moderate polymorphism and allelic diversity and similar patterns of selection; patterns of non-synonymous and synonymous substitutions were consistent with balancing selection acting on the peptides involved in antigen binding in the second exon. In addition, balancing selection has led to strong trans-species allelism that has maintained multiple allelic lineages across both genera of extant elephants for at least 6 million years. We discuss our results in the context of MHC diversity in other mammals and patterns of evolution in elephants.  相似文献   

16.
Serological and molecular diversity in the cattle MHC class I region   总被引:2,自引:2,他引:0  
Information on major histocompatibility complex (MHC) diversity in cattle is important to aid our understanding of immune responses and may contribute to maintenance of healthy cattle populations. Equally, understanding the mechanisms involved in generating this diversity may shed light on the complex nature of mammalian MHC evolution. The aim of this study was to assess molecular and serological variation within cattle MHC class I molecules and to study the mechanisms generating diversity. To address this aim, sequence variation was examined in 12 serologically assigned alleles from three putative loci and correlated with monoclonal antibody (mAb) binding data. The results demonstrate that both alloantisera and mAbs often fail to distinguish gene products that differ by a significant number of amino acids. Conversely, some mAbs could distinguish alleles differing by only one or two amino acids. Examination of the sequences demonstrates sharing of motifs between alleles, some encoded at distinct loci, supporting the occurrence of interlocus recombination within the cattle MHC class I region. The implications of this for MHC sequence diversity, and functional capability, are discussed.  相似文献   

17.
One of the most remarkable features of the MHC class I loci of most outbred mammalian populations is their exceptional diversity, yet the functional importance of this diversity remains to be fully understood. The cotton-top tamarin (Saguinus oedipus) is unusual in having MHC class I loci that exhibit both limited polymorphism and sequence variation. To investigate the functional implications of limited MHC class I diversity in this outbred primate species, we infected five tamarins with influenza virus and defined the CTL epitopes recognized by each individual. In addition to an immunodominant epitope of the viral nucleoprotein (NP) that was recognized by all individuals, two tamarins also made a response to the same epitope of the matrix (M1) protein. Surprisingly, these two tamarins used different MHC class I molecules, Saoe-G*02 and -G*04, to present the M1 epitope. In addition, CTLs from one of the tamarins recognized target cells that expressed neither Saoe-G*02 nor -G*04, but, rather, a third MHC class I molecule, Saoe-G*12. Sequence analysis revealed that Saoe-G*12 differs from both Saoe-G*02 and -G*04 by only two nucleotides and was probably generated by recombination between these two alleles. These results demonstrate that at least three of the tamarin's MHC class I molecules can present the same epitope to virus-specific CTLs. Thus, four of the tamarin's 12 MHC class I molecules bound only two influenza virus CTL epitopes. Therefore, the functional diversity of cotton-top tamarin's MHC class I loci may be even more limited than their genetic diversity suggests.  相似文献   

18.
19.
 HLA-G is a nonclassical major histocompatibility complex (MHC) class I molecule that is expressed only in the human placenta, suggesting that it plays an important role at the fetal-maternal interface. In rhesus monkeys, which have similar placentation to humans, the HLA-G orthologue is a pseudogene. However, rhesus monkeys express a novel placental MHC class I molecule, Mamu-AG, which has HLA-G-like characteristics. Phylogenetic analysis of AG alleles in two Old World primate species, the baboon and the rhesus macaque, revealed limited diversity characteristic of a nonclassical MHC class I locus. Gene trees constructed using classical and nonclassical primate MHC class I alleles demonstrated that the AG locus was most closely related to the classical A locus. Interestingly, gene tree analyses suggested that the AG alleles were most closely related to a subset of A alleles which are the products of an ancestral interlocus recombination event between the A and B loci. Calculation of the rates of synonymous and nonsynonymous substitution at the AG locus revealed that positive selection was not acting on the codons encoding the peptide binding region. In exon 4, however, the rate of nonsynonymous substitution was significantly lower than the rate of synonymous substitution, suggesting that negative selection was acting on these codons. Received: 22 April 1998 / Revised: 15 July 1998  相似文献   

20.
The major histocompatibility complex (MHC) is a gene dense region with profound effects on the disease phenotype. In many species, characterizations of MHC polymorphisms have focused on identifying allelic haplotypes of the highly polymorphic class I and class II loci through direct immunological approaches such as monoclonal antibodies specific for the major antigens or indirectly through DNA sequence-based approaches. Invariably, these studies fail to assess the broader range of variation at the other loci within the MHC. This study examines variation in the turkey MHC by resequencing 15 interspersed amplicons (∼14 kb) spaced across the MHC-B locus in a representative sampling of 52 commercial birds. Over 200 single nucleotide polymorphisms (SNPs) were identified with high levels of polymorphism (1 SNP/70 bp) and heterozygosity (average minor allele frequency of 0.15). SNP genotypes were used to identify the major haplotypes segregating in the commercial lines. Sequencing of the peptide binding region (PBR, exon 2) of the class IIB loci of select individuals identified 10 PBR alleles/isotypes among the major MHC haplotypes. Examination of pedigreed families provides direct evidence of gene conversion and recombination within the B locus. Results of this study demonstrate the MHC diversity available in commercial flocks and provide genomic resources for studying the effect of this diversity (alleles and/or haplotypes) on disease susceptibility and resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号