首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
MHC class I characterization of Indonesian cynomolgus macaques   总被引:2,自引:2,他引:0  
Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length major histocompatibility complex (MHC) class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B7601 is identical throughout its peptide binding domain to Mamu-B03, an allele that has been associated with control of Simian immunodeficiency virus (SIV) viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research, and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia.  相似文献   

4.
Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. Kevin J. Campbell and Ann M. Detmer contributed equally to this work.  相似文献   

5.
In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.  相似文献   

6.
Successful human immunodeficiency virus (HIV) vaccines will need to induce effective T-cell immunity. We studied immunodominant simian immunodeficiency virus (SIV) Gag-specific T-cell responses and their restricting major histocompatibility complex (MHC) class I alleles in pigtail macaques (Macaca nemestrina), an increasingly common primate model for the study of HIV infection of humans. CD8+ T-cell responses to an SIV epitope, Gag164-172KP9, were present in at least 15 of 36 outbred pigtail macaques. The immunodominant KP9-specific response accounted for the majority (mean, 63%) of the SIV Gag response. Sequencing from six macaques identified 7 new Mane-A and 13 new Mane-B MHC class I alleles. One new allele, Mane-A*10, was common to four macaques that responded to the KP9 epitope. We adapted reference strand-mediated conformational analysis (RSCA) to MHC class I genotype M. nemestrina. Mane-A*10 was detected in macaques presenting KP9 studied by RSCA but was absent from non-KP9-presenting macaques. Expressed on class I-deficient cells, Mane-A*10, but not other pigtail macaque MHC class I molecules, efficiently presented KP9 to responder T cells, confirming that Mane-A*10 restricts the KP9 epitope. Importantly, naive pigtail macaques infected with SIVmac251 that respond to KP9 had significantly reduced plasma SIV viral levels (log10 0.87 copies/ml; P=0.025) compared to those of macaques not responding to KP9. The identification of this common M. nemestrina MHC class I allele restricting a functionally important immunodominant SIV Gag epitope establishes a basis for studying CD8+ T-cell responses against AIDS in an important, widely available nonhuman primate species.  相似文献   

7.
MHC-dependent CD8(+) T cell responses have been associated with control of viral replication and slower disease progression during lentiviral infections. Pig-tailed macaques (Macaca nemestrina) and rhesus monkeys (Macaca mulatta), two nonhuman primate species commonly used to model HIV infection, can exhibit distinct clinical courses after infection with different primate lentiviruses. As an initial step in assessing the role of MHC class I restricted immune responses to these infections, we have cloned and characterized classical MHC class I genes of pig-tailed macaques and have identified 19 MHC class I alleles (Mane) orthologous to rhesus macaque MHC-A, -B, and -I genes. Both Mane-A and Mane-B loci were found to be duplicated, and no MHC-C locus was detected. Pig-tailed and rhesus macaque MHC-A alleles form two groups, as defined by 14 polymorphisms affecting mainly their B peptide-binding pockets. Furthermore, an analysis of multiple pig-tailed monkeys revealed the existence of three MHC-A haplotypes. The distribution of these haplotypes in various Old World monkeys provides new insights about MHC-A evolution in nonhuman primates. An examination of B and F peptide-binding pockets in rhesus and pig-tailed macaques suggests that their MHC-B molecules present few common peptides to their respective CTLs.  相似文献   

8.
Vaccines that elicit CD8+ T-cell responses are routinely tested for immunogenicity in nonhuman primates before advancement to clinical trials. Unfortunately, the magnitude and specificity of vaccine-elicited T-cell responses are variable in currently utilized nonhuman primate populations, owing to heterogeneity in major histocompatibility (MHC) class I genetics. We recently showed that Mauritian cynomolgus macaques (MCM) have unusually simple MHC genetics, with three common haplotypes encoding a shared pair of MHC class IA alleles, Mafa-A*25 and Mafa-A*29. Based on haplotype frequency, we hypothesized that CD8+ T-cell responses restricted by these MHC class I alleles would be detected in nearly all MCM. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined simian immunodeficiency virus-specific CD8+ T-cell responses. The epitopes recognized by each of these responses accumulated substitutions consistent with immunologic escape, suggesting these responses exert antiviral selective pressure. The demonstration that Mafa-A*25 and Mafa-A*29 restrict CD8+ T-cell responses that are shared among nearly all MCM indicates that these animals are an advantageous nonhuman primate model for comparing the immunogenicity of vaccines that elicit CD8+ T-cell responses.The immunogenicity and efficacy of vaccines intended for human use are commonly evaluated in rhesus and cynomolgus macaques. Indeed, researchers studied an estimated one million macaques in the search for a polio vaccine (5). More recently, these animals have become the dominant preclinical model for human immunodeficiency virus (HIV) vaccine evaluation. Rhesus and cynomolgus macaques are susceptible to infection with pathogenic strains of simian immunodeficiency virus (SIV), lentiviruses that share close genetic homology to HIV and cause AIDS-defining illnesses (11, 14). Vaccines designed to provide sterilizing immunity or control immunodeficiency virus replication can therefore be evaluated in macaques. In addition, the immune systems of humans and macaques are highly similar, providing hope that promising vaccines in macaques can be readily adapted for use in humans.CD8+ T cells are particularly attractive candidates for vaccine development. Several lines of evidence indicate that CD8+ T cells are important to the control of HIV/SIV viral replication. Expansion of HIV/SIV-specific CD8+ T cells during acute viremia is associated with a sharp decline in viral load (6, 21, 50), while the depletion of CD8+ cells in SIV-infected macaques results in increased viral loads (13, 27) and abrogates the protection elicited by live, attenuated vaccination (30, 38). Furthermore, major histocompatibility complex (MHC) genotyping studies have identified multiple MHC class I alleles enriched in human and macaque elite controllers (17, 19, 26, 31, 49).Recently, Merck and the HIV Vaccine Trials Network cancelled a phase IIb clinical trial evaluating an HIV vaccine designed to elicit CD8+ T-cell immunity. An interim analysis revealed the vaccine was ineffective and that participants with prior immunity to the vaccine vector actually had a higher incidence of HIV infection (7, 28, 39, 43). Dozens of additional vaccines that aim to elicit CD8+ T cells are in various stages of preclinical and early-stage clinical development, and testing these vaccines in macaques will provide the proof-of-concept necessary to predict their success.Unfortunately, it has been impossible to definitively associate the breadth, magnitude, or phenotype of SIV-specific CD8+ T-cell responses, elicited by competing vaccine modalities, to viral control. Indian rhesus macaques are the most commonly used model for HIV vaccine testing but have extremely diverse MHC class I genetics, giving rise to heterogeneous CD8+ T-cell responses. SIV derived CD8+ T-cell epitopes have been defined for eight Indian rhesus macaque MHC class I alleles (24). However, more than 400 classical MHC class I alleles have been identified in rhesus macaques, leaving an enormous gap in our understanding of the overall CD8+ T-cell repertoire following SIV infection (37). Identifying large cohorts of Indian rhesus macaques matched for one or more MHC class I alleles, and thus predicted to mount CD8+ T-cell responses against the same epitopes, is both difficult and expensive. An abundant nonhuman primate model with limited MHC diversity could standardize testing of each new vaccine entering preclinical development. Indeed, head-to-head testing of CD8+ T-cell vaccines is essential to maximize the efficiency of the global vaccine enterprise and prioritize rapid advancement of promising candidates.In contrast to Indian rhesus macaques, Mauritian cynomolgus macaques (MCM) are an insular population that expanded from a small number of founder animals (23) over the last 500 years. The unique natural history of these animals is manifest by exceptionally low genetic diversity. We have characterized the MHC genetics of this population and found only seven common haplotypes containing fewer than 30 MHC class I alleles (12, 48). The three most common MHC haplotypes each express Mafa-A*25 and Mafa-A*29. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined SIV-specific CD8+ T-cell responses that drive SIV variation. These results suggest that MCM will provide an exceptionally valuable resource for head-to-head evaluations of competing vaccine modalities.  相似文献   

9.
Pig-tailed macaques (Macaca nemestrina) serve as important models for human infectious disease research. Major histocompatibility complex (MHC) class II molecules are important to this research since they present peptides to CD4+ T cells. Despite the importance of characterizing the MHC-II alleles expressed in model species like pig-tailed macaques, to date, less than 150 MHC-II alleles have been named for the six most common classical class II loci (DRA, DRB, DQA, DQB, DPA, and DPB) in this population. Additionally, only a small percentage of these alleles are full-length, making it impossible to use the known sequence for reagent development. To address this, we developed a fast, high-throughput method to discover full-length MHC-II alleles and used it to characterize alleles in 32 pig-tailed macaques. By this method, we identified 128 total alleles across all six loci. We also performed an exon 2-based genotyping assay to validate the full-length sequencing results; this genotyping assay could be optimized for use in determining MHC-II allele frequencies in large cohorts of pig-tailed macaques.  相似文献   

10.
Although the functions of the molecules encoded by the classical MHC class I loci are well defined, no function has been ascribed to the molecules encoded by the non-classical MHC class I loci. To investigate the evolution and conservation of the non-classical loci, we cloned and sequenced HLA-E homologues in macaques. We isolated four E locus alleles from five rhesus monkeys and two E locus alleles from one cynomolgus monkey, which indicated that the E locus in macaques is polymorphic. We also compared the rate of nucleotide substitution in the second intron of the macaque and human E locus alleles with that of exons two and three. The rate of nucleotide substitution was significantly higher in the introns, which suggested that the E locus has evolved under selective pressure. Additionally, comparison of the rates of synonymous and non-synonymous substitutions in the peptide binding region versus the remainder of the molecule suggested that the codons encoding the amino acids in the peptide binding region had been conserved in macaques and humans over the 36 million years since macaques and humans last shared a common ancestor.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers UO2976–UO2981  相似文献   

11.
Background  Mauritian cynomolgus macaques have greatly restricted genetic diversity in the MHC region compared to other non-human primates; however, the frequency of common MHC haplotypes among captive-bred populations has not been reported.
Methods  Microsatellite PCR was used to determine MHC haplotype frequencies among captive macaques at a UK breeding facility. Allele-specific PCR and reference strand conformational analysis were used to determine the allele expression profile of a subset of animals.
Results  Haplotypes H3 (21%) and H1 (19%) were most common in the captive population of Mauritian cynomolgus macaques. Predicted alleles were detected by allele-specific PCR-SSP in 98% of animals. Allele expression profiles were similar in animals with identical haplotypes.
Conclusions  Mauritian cynomolgus macaques in the UK breeding facility have restricted MHC diversity comparable to a previously described population. Microsatellite-derived haplotypes are highly predictive of allele expression. A selective breeding program has been established to produce MHC-identical animals for biomedical research.  相似文献   

12.
Acute shortages of Indian origin Rhesus macaques significantly hinder HIV/AIDS research. Cellular immune responses are particularly difficult to study because only a subset of animals possess MHC class I (MHC I) alleles with defined peptide-binding specificities. To expand the pool of nonhuman primates suitable for studies of cellular immunity, we defined 66 MHC I alleles in Cynomolgus macaques (Macaca fascicularis) of Chinese, Vietnamese, and Mauritian origin. Most MHC I alleles were found only in animals from a single geographic origin, suggesting that Cynomolgus macaques from different origins are not interchangeable in studies of cellular immunity. Animals from Mauritius may be particularly valuable because >50% of these Cynomolgus macaques share the MHC class I allele combination Mafa-B*430101, Mafa-B*440101, and Mafa-B*460101. The increased MHC I allele sharing of Mauritian origin Cynomolgus macaques may dramatically reduce the overall number of animals needed to study cellular immune responses in nonhuman primates while simultaneously reducing the confounding effects of genetic heterogeneity in HIV/AIDS research.  相似文献   

13.
14.
Major histocompatibility complex (MHC) class II genes, which play a major role in the immune system response, are some of the most polymorphic genes in vertebrates. We developed polymerase chain reaction primers for part of the second exon of an expressed MHC class II gene in the common frog, Rana temporaria. We genotyped this locus in five frog populations in southeast England and detected eight alleles in 215 individuals. Five or six alleles were detected in each population with a maximum of two alleles per individual, indicating that only a single locus was amplified. We also inferred the possible existence of a null allele. There were 23 variable nucleotide sites (out of 136) and 13 variable amino acid sites (out of 44), many of which corresponded to amino acids involved in antigen recognition. We detected a significant excess of nonsynonymous substitutions at antigen binding sites, indicating that this gene is under positive selection. The level of variation we found was similar to that in other amphibian MHC class II loci, such as those in Bombina bombina, Xenopus laevis and Ambystoma tigrinum.  相似文献   

15.
Both phenotypic and genetic evidence for asymmetric hybridization between rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques has been observed in the region of Indochina where both species are sympatric. The large‐scale sharing of major histocompatibility complex (MHC) class II alleles between the two species in this region supports the hypothesis that genes, and especially genes involved in immune response, are being transferred across the species boundary. This differential introgression has important implications for the incorporation of cynomolgus macaques of unknown geographic origin in biomedical research protocols. Our study found that for 2,808 single‐nucleotide polymorphism (SNP) markers, the minor allele frequencies (MAF) and observed heterozygosity calculated from a sample of Vietnamese cynomolgus macaques was significantly different from those calculated from samples of both Chinese rhesus and Indonesian cynomolgus macaques. SNP alleles from Chinese rhesus macaques were overrepresented in a sample of Vietnamese cynomolgus macaques relative to their Indonesian conspecifics and located in genes functionally related to the primary immune system. These results suggest that Indochinese cynomolgus macaques represent a genetically and immunologically distinct entity from Indonesian cynomolgus macaques. Am. J. Primatol. 75:135‐144, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Cynomolgus macaques (Macaca fascicularis) are used widely in biomedical research, and the genetics of their MHC (Mhc-Mafa) has become the focus of considerable attention in recent years. The cohort of Indonesian pedigreed macaques that we present here was typed for Mafa-A, -B, and -DR, by sequencing, as described in earlier studies. Additionally, the DRB region of these animals was characterised by microsatellite analyses. In this study, full-length sequencing of Mafa-DPA/B and -DQA/B in these animals was performed. A total of 75 different alleles were observed; 22 of which have not previously been reported, plus 18 extended exon 2 alleles that were already known. Furthermore, two microsatellites, D6S2854 and D6S2859, were used to characterise the complex Mafa-A region. Sequencing and segregation analyses revealed that the length patterns of these microsatellites are unique for each Mafa-A haplotype. In this work, we present a pedigreed colony of approximately 120 cynomolgus macaques; all of which are typed for the most significant polymorphic MHC class I and class II markers. Offspring of these pedigreed animals are easily characterised for their MHC by microsatellite analyses on the Mafa-A and -DRB regions, which makes the cumbersome sequencing analyses redundant.  相似文献   

17.
Killer Ig-like receptors (KIRs) are implicated in protection from multiple pathogens including HIV, human papillomavirus, and malaria. Nonhuman primates such as rhesus and cynomolgus macaques are important models for the study of human pathogens; however, KIR genetics in nonhuman primates are poorly defined. Understanding KIR allelic diversity and genomic organization are essential prerequisites to evaluate NK cell responses in macaques. In this study, we present a complete characterization of KIRs in Mauritian cynomolgus macaques, a geographically isolated population. In this study we demonstrate that only eight KIR haplotypes are present in the entire population and characterize the gene content of each. Using the simplified genetics of this population, we construct a model for macaque KIR genomic organization, defining four putative KIR3DL loci, one KIR3DH, two KIR2DL, and one KIR1D. We further demonstrate that loci defined in Mauritian cynomolgus macaques can be applied to rhesus macaques. The findings from this study fundamentally advance our understanding of KIR genetics in nonhuman primates and establish a foundation from which to study KIR signaling in disease pathogenesis.  相似文献   

18.
The human leukocyte antigen (HLA) complex, encompassing 3.5 Mb of DNA from the centromeric HLA-DPB2 locus to the telomeric HLA-F locus on chromosome 6p21, encodes a major part of the genetic predisposition to develop type 1 diabetes, designated "IDDM1." A primary role for allelic variation of the class II HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci has been established. However, studies of animals and humans have indicated that other, unmapped, major histocompatibility complex (MHC)-linked genes are participating in IDDM1. The strong linkage disequilibrium between genes in this complex makes mapping a difficult task. In the present paper, we report on the approach we have devised to circumvent the confounding effects of disequilibrium between class II alleles and alleles at other MHC loci. We have scanned 12 Mb of the MHC and flanking chromosome regions with microsatellite polymorphisms and analyzed the transmission of these marker alleles to diabetic probands from parents who were homozygous for the alleles of the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes. Our analysis, using three independent family sets, suggests the presence of an additional type I diabetes gene (or genes). This approach is useful for the analysis of other loci linked to common diseases, to verify if a candidate polymorphism can explain all of the association of a region or if the association is due to two or more loci in linkage disequilibrium with each other.  相似文献   

19.
Nonhuman primates are widely used to study correlates of protective immunity in AIDS research. Successful cellular immune responses have been difficult to identify because heterogeneity within macaque major histocompatibility complex (MHC) genes results in quantitative and qualitative differences in immune responses. Here we use microsatellite analysis to show that simian immunodeficiency virus (SIV)-susceptible cynomolgus macaques (Macaca fascicularis) from the Indian Ocean island of Mauritius have extremely simple MHC genetics, with six common haplotypes accounting for two-thirds of the MHC haplotypes in feral animals. Remarkably, 39% of Mauritian cynomolgus macaques carry at least one complete copy of the most frequent MHC haplotype, and 8% of these animals are homozygous. In stark contrast, entire MHC haplotypes are rarely conserved in unrelated Indian rhesus macaques. After intrarectal infection with highly pathogenic SIVmac239 virus, a pair of MHC-identical Mauritian cynomolgus macaques mounted concordant cellular immune responses comparable to those previously reported for a pair of monozygotic twins infected with the same strain of human immunodeficiency virus. Our identification of relatively abundant SIV-susceptible, MHC-identical macaques will facilitate research into protective cellular immunity.  相似文献   

20.
Cynomolgus macaques are widely used as a primate model for human diseases associated with an immunological process. Because there are individual differences in immune responsiveness, which are controlled by the polymorphic nature of the major histocompatibility (MHC) locus, it is important to reveal the diversity of MHC in the model animal. In this study, we analyzed 26 cynomolgus macaques from five families for MHC class I genes. We identified 32 Mafa-A, 46 Mafa-B, 6 Mafa-I, and 3 Mafa-AG alleles in which 14, 20, 3, and 3 alleles were novel. There were 23 MHC class I haplotypes and each haplotype was composed of one to three Mafa-A alleles and one to five Mafa-B alleles. Family studies revealed that there were two haplotypes which contained two Mafa-A1 alleles. These observations demonstrated further the complexity of MHC class I locus in the Old World monkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号