首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active host-pathogen interactions take place during infection of human immunodeficiency virus type 1 (HIV-1).Outcomes of these interactions determine the efficiency of viral infection and subsequent disease progression. HIV-infected cells respond to viral invasion with various defensive strategies such as innate, cellular and humoral immune antiviral mechanisms. On the other hand, the virus has also developed various offensive tactics to suppress these host cellular responses. Among many of the viral offensive strategies, HIV- 1 viral auxiliary proteins (Tat, Rev, Nef, Vif, Vpr and Vpu) play important roles in the host-pathogen interaction and thus have significant impacts on the outcome of HIV infection. One of the best examples is the interaction of Vif with a host cytidine deaminase APOBEC3G. Although specific roles of other auxiliary proteins are not as well described as Vif-APOBEC3G interaction, it is the goal of this brief review to summarize some of the preliminary findings with the hope to stimulate further discussion and investigation in this exhilarating area of research.  相似文献   

2.
Li L  Li HS  Pauza CD  Bukrinsky M  Zhao RY 《Cell research》2005,15(11-12):923-934
Active host-pathogen interactions take place during infection of human immunodeficiency virus type 1 (HIV-1). Outcomes of these interactions determine the efficiency of viral infection and subsequent disease progression. HIV-infected cells respond to viral invasion with various defensive strategies such as innate, cellular and humoral immune antiviral mechanisms. On the other hand, the virus has also developed various offensive tactics to suppress these host cellular responses. Among many of the viral offensive strategies, HIV-1 viral auxiliary proteins (Tat, Rev, Nef, Vif, Vpr and Vpu) play important roles in the host-pathogen interaction and thus have significant impacts on the outcome of HIV infection. One of the best examples is the interaction of Vif with a host cytidine deaminase APOBEC3G. Although specific roles of other auxiliary proteins are not as well described as Vif-APOBEC3G interaction, it is the goal of this brief review to summarize some of the preliminary findings with the hope to stimulate further discussion and investigation in this exhilarating area of research.  相似文献   

3.
4.
The viral infectivity factor (Vif), one of the six HIV-1 auxiliary genes, is absolutely necessary for productive infection in primary CD4-positive T lymphocytes and macrophages. Vif overcomes the antiviral function of the host factor APOBEC3G. To better understand this mechanism, it is of interest to characterize cellular proteins that interact with Vif and may regulate its function. Here, we show that Vif binds to hNedd4 and AIP4, two HECT E3 ubiquitin ligases. WW domains present in those HECT enzymes contribute to the binding of Vif. Moreover, the region of Vif, which includes amino acids 20-128 and interacts with the hNedd4 WW domains, does not contain proline-rich stretches. Lastly, we show that Vif undergoes post-translational modifications by addition of ubiquitin both in cells overexpressing Vif and in cells expressing HIV-1 provirus. Vif is mainly mono-ubiquitinated, a modification known to address the Gag precursor to the virus budding site.  相似文献   

5.
Viral infectivity factor (Vif) is one of the human immunodeficiency virus (HIV) accessory proteins and is conserved in the primate lentivirus group. This protein is essential for viral replication in vivo and for productive infection of nonpermissive cells, such as peripheral blood mononuclear cells (PBMC). Vif counteracts an antiretroviral cellular factor in nonpermissive cells named CEM15/APOBEC3G. Although HIV type 1 (HIV-1) Vif protein (Vif1) can be functionally replaced by HIV-2 Vif protein (Vif2), its identity is very small. Most of the functional studies have been carried out with Vif1. Characterization of functional domains of Vif2 may elucidate its function, as well as differences between HIV-1 and HIV-2 infectivity. Our aim was to identify the permissivity of different cell lines for HIV-2 vif-minus viruses. By mutagenesis specific conserved motifs of HIV-2 Vif protein were analyzed, as well as in conserved motifs between Vif1 and Vif2 proteins. Vif2 mutants were examined for their stability, expression, and cellular localization in order to characterize essential domains of Vif2 proteins. Viral replication in various target cells (PBMC and H9, A3.01, U38, and Jurkat cells) and infectivity in single cycle assays in the presence of APOBEC3G were also analyzed. Our results of viral replication show that only PBMC have a nonpermissive phenotype in the absence of Vif2. Moreover, the HIV-1 vif-minus nonpermissive cell line H9 does not show a similar phenotype for vif-negative HIV-2. We also report a limited effect of APOBEC3G in a single-cycle infectivity assay, where only conserved domains between HIV-1 and HIV-2 Vif proteins influence viral infectivity. Taken together, these results allow us to speculate that viral inhibition by APOBEC3G is not the sole and most important determinant of antiviral activity against HIV-2.  相似文献   

6.
Liu B  Yu X  Luo K  Yu Y  Yu XF 《Journal of virology》2004,78(4):2072-2081
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral evasion of the host antiviral protein APOBEC3G, also known as CEM15. Vif mutant but not wild-type HIV-1 viruses produced in the presence of APOBEC3G have been shown to undergo hypermutations in newly synthesized viral DNA upon infection of target cells, presumably resulting from C-to-U modification during minus-strand viral DNA synthesis. We now report that HIV-1 Vif could induce rapid degradation of human APOBEC3G that was blocked by the proteasome inhibitor MG132. The efficiency of Vif-induced downregulation of APOBEC3G expression depended on the level of Vif expression. A single amino acid substitution in the conserved SLQXLA motif reduced Vif function. Vif proteins from distantly related primate lentiviruses such as SIVagm were unable to suppress the antiviral activity of human APOBEC3G or the packaging of APOBEC3G into HIV-1 Vif mutant virions, due to a lack of interaction with human APOBEC3G. In the presence of the proteasome inhibitor MG132, virion-associated Vif increased dramatically. However, increased virion packaging of Vif did not prevent virion packaging of APOBEC3G when proteasome function was impaired, and the infectivity of these virions was significantly reduced. These results suggest that Vif function is required during virus assembly to remove APOBEC3G from packaging into released virions. Once packaged, virion-associated Vif could not efficiently block the antiviral activity of APOBEC3G.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) Vif plays a crucial role in the viral life cycle by antagonizing a host restriction factor APOBEC3G (A3G). Vif interacts with A3G and induces its polyubiquitination and subsequent degradation via the formation of active ubiquitin ligase (E3) complex with Cullin5-ElonginB/C. Although Vif itself is also ubiquitinated and degraded rapidly in infected cells, precise roles and mechanisms of Vif ubiquitination are largely unknown. Here we report that MDM2, known as an E3 ligase for p53, is a novel E3 ligase for Vif and induces polyubiquitination and degradation of Vif. We also show the mechanisms by which MDM2 only targets Vif, but not A3G that binds to Vif. MDM2 reduces cellular Vif levels and reversely increases A3G levels, because the interaction between MDM2 and Vif precludes A3G from binding to Vif. Furthermore, we demonstrate that MDM2 negatively regulates HIV-1 replication in non-permissive target cells through Vif degradation. These data suggest that MDM2 is a regulator of HIV-1 replication and might be a novel therapeutic target for anti-HIV-1 drug.  相似文献   

8.
9.
Zuo T  Liu D  Lv W  Wang X  Wang J  Lv M  Huang W  Wu J  Zhang H  Jin H  Zhang L  Kong W  Yu X 《Journal of virology》2012,86(10):5497-5507
The HIV-1 viral infectivity factor (Vif) protein is essential for viral replication. Vif recruits cellular ElonginB/C-Cullin5 E3 ubiquitin ligase to target the host antiviral protein APOBEC3G (A3G) for proteasomal degradation. In the absence of Vif, A3G is packaged into budding HIV-1 virions and introduces multiple mutations in the newly synthesized minus-strand viral DNA to restrict virus replication. Thus, the A3G-Vif-E3 complex represents an attractive target for development of novel anti-HIV drugs. In this study, we identified a potent small molecular compound (VEC-5) by virtual screening and validated its anti-Vif activity through biochemical analysis. We show that VEC-5 inhibits virus replication only in A3G-positive cells. Treatment with VEC-5 increased cellular A3G levels when Vif was coexpressed and enhanced A3G incorporation into HIV-1 virions to reduce viral infectivity. Coimmunoprecipitation and computational analysis further attributed the anti-Vif activity of VEC-5 to the inhibition of Vif from direct binding to the ElonginC protein. These findings support the notion that suppressing Vif function can liberate A3G to carry out its antiviral activity and demonstrate that regulation of the Vif-ElonginC interaction is a novel target for small-molecule inhibitors of HIV-1.  相似文献   

10.
The HIV-1 protein Vif is essential for in vivo viral replication that targets the human DNA-editing enzyme, APOBEC3G (A3G), which inhibits replication of retroviruses. The Vif-A3G interactions are believed to be important targets for antiviral drug development. Since the interactions of A3G and Vif evade the ubiquitination pathways in human host, the viral replication precedes which otherwise spreads infection. In this study, two potent Vif inhibitors RN 18 and VEC5 have been evaluated for their inhibitory potential employing ligand receptor and protein-protein interactions studies. VEC 5 showed better interaction with Vif than RN18. Predicted data show that VEC5 bound Vif and RN18 bound Vif showed diminished interaction to A3G compared to inhibitor unbound Vif. However, this should be further validated using in vitro studies.  相似文献   

11.
12.
The HIV-1 protein Vif, essential for in vivo viral replication, targets the human DNA-editing enzyme, APOBEC3G (A3G), which inhibits replication of retroviruses and hepatitis B virus. As Vif has no known cellular homologs, it is an attractive, yet unrealized, target for antiviral intervention. Although zinc chelation inhibits Vif and enhances viral sensitivity to A3G, this effect is unrelated to the interaction of Vif with A3G. We identify a small molecule, RN-18, that antagonizes Vif function and inhibits HIV-1 replication only in the presence of A3G. RN-18 increases cellular A3G levels in a Vif-dependent manner and increases A3G incorporation into virions without inhibiting general proteasome-mediated protein degradation. RN-18 enhances Vif degradation only in the presence of A3G, reduces viral infectivity by increasing A3G incorporation into virions and enhances cytidine deamination of the viral genome. These results demonstrate that the HIV-1 Vif-A3G axis is a valid target for developing small molecule-based new therapies for HIV infection or for enhancing innate immunity against viruses.  相似文献   

13.
载脂蛋白B mRNA编辑催化多肽样(apolipoprotein B mRNA-editing catalytic polypeptide-like,APOBEC)蛋白是一组胞嘧啶脱氨基酶,具有天然的抗病毒活性,对多种病毒具有抑制作用,特别是逆转录病毒. APOBEC3蛋白能够抑制人类免疫缺陷病毒(HIV-1)的感染,其中APOBEC3G和APOBEC3F的作用最强. APOBEC3G能够通过胞嘧啶脱氨基作用和非胞嘧啶脱氨基作用抑制病毒感染. HIV-1病毒感染因子(Vif) 蛋白主要经泛素-蛋白酶体途径介导APOBEC3G降解,从而拮抗其抗病毒作用. APOBEC3G和Vif之间相互作用的研究对于寻求新的抗HIV治疗靶点具有重要意义.  相似文献   

14.
15.
Human cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) inhibit replication of Vif-deficient human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif overcomes these host restriction factors by binding to them and inducing their proteasomal degradation. The Vif-A3G and Vif-A3F interactions are attractive targets for antiviral drug development because inhibiting the interactions could allow the host defense mechanism to control HIV-1 replication. It was recently reported that the Vif amino acids D(14)RMR(17) are important for functional interaction and degradation of the previously identified Vif-resistant mutant of A3G (D128K-A3G). However, the Vif determinants important for functional interaction with A3G and A3F have not been fully characterized. To identify these determinants, we performed an extensive mutational analysis of HIV-1 Vif. Our analysis revealed two distinct Vif determinants, amino acids Y(40)RHHY(44) and D(14)RMR(17), which are essential for binding to A3G and A3F, respectively. Interestingly, mutation of the A3G-binding region increased Vif's ability to suppress A3F. Vif binding to D128K-A3G was also dependent on the Y(40)RHHY(44) region but not the D(14)RMR(17) region. Consistent with previous observations, subsequent neutralization of the D128K-A3G antiviral activity required substitution of Vif determinant D(14)RMR(17) with SEMQ, similar to the SERQ amino acids in simian immunodeficiency virus SIV(AGM) Vif, which is capable of neutralizing D128K-A3G. These studies are the first to clearly identify two distinct regions of Vif that are critical for independent interactions with A3G and A3F. Pharmacological interference with the Vif-A3G or Vif-A3F interactions could result in potent inhibition of HIV-1 replication by the APOBEC3 proteins.  相似文献   

16.
The HIV-1 viral infectivity factor (Vif) protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC), cullin 5 (Cul5) and RING-box 2 (Rbx2), to the anti-viral proteins APOBEC3G (A3G) and APOBEC3F (A3F) and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif''s BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function.  相似文献   

17.
18.
19.
20.
Liu B  Sarkis PT  Luo K  Yu Y  Yu XF 《Journal of virology》2005,79(15):9579-9587
The human cytidine deaminase Apobec3F (h-A3F), a protein related to the previously recognized antiviral factor Apobec3G (h-A3G), has antiviral activity against human immunodeficiency virus type 1 (HIV-1) that is suppressed by the viral protein Vif. The mechanism of HIV-1 Vif-mediated suppression of h-A3F is not fully understood. Here, we demonstrate that while h-A3F, like h-A3G, was able to suppress primate lentiviruses other than HIV-1 (simian immunodeficiency virus from African green monkeys [SIVagm] and Rhesus macaques [SIVmac]), the interaction between Vif proteins and h-A3F appeared to differ from that with h-A3G. H-A3F showed no change in its species specificity against HIV-1 or SIVagm Vif when a negatively charged amino acid was replaced with a lysine at position 128, a residue critical for h-A3G recognition by HIV-1 Vif. However, HIV-1 Vif, but not SIVagm Vif, was able to bind h-A3F and induce its polyubiquitination and degradation through the Cul5-containing E3 ubiquitin ligase. Interference with Cul5-E3 ligase function by depletion of Cul5, through RNA interference or overexpression of Cul5 mutants, blocked the ability of HIV-1 Vif to suppress h-A3F. A BC-box mutant of HIV-1 Vif that failed to recruit Cul5-E3 ligase but was still able to interact with h-A3F failed to suppress h-A3F. Interestingly, interference with Cul5-E3 ligase function or overexpression of h-A3F or h-A3G also increased the stability of HIV-1 Vif, suggesting that like the substrate molecules h-A3F and h-A3G, the substrate receptor protein Vif is itself also regulated by Cul5-E3 ligase. Our results indicate that Cul5-E3 ligase appears to be a common pathway hijacked by HIV-1 Vif to defeat both h-A3F and h-A3G. Developing inhibitors to disrupt the interaction between Vif and Cul5-E3 ligase could be therapeutically useful, allowing multiple host antiviral factors to suppress HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号