首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
胚胎干细胞(embryonic stem cells,ESCs)具有自我更新和多向分化的特性。近年研究显示转录后调控包括micro RNAs(mi RNAs)的调控在ESC心肌细胞分化(ESC-derived cardiomyocytes,ESCM)命运决定中起着重要作用。然而对决定ESC分化命运的mi RNAs的了解还非常有限。为了进一步认识mi RNAs对心肌细胞分化的调控作用,本研究采用经典的悬滴法诱导小鼠ESC(m ESC)分化成心肌细胞,采用安捷伦8×15k小鼠mi RNAs芯片(mi Rbase V16.0)比较了富含跳动心肌细胞区域与非跳动区域mi RNAs表达谱的异同,发现与非跳动区域相比,跳动区域中有19个mi RNAs发生了5倍以上的表达变化(n=3,P0.05),其中5个mi RNAs表达上调、14个mi RNAs表达下调。采用定量RT-PCR进一步分析了mi RNAs芯片中差异倍数大于10的mi RNAs,证明mi R-196a,mi R-196b和mi R-467e在心肌细胞跳动区域的表达丰度明显低于非跳动区域(n=3,P0.05)。用Target Scan数据库对mi R-196a和mi R-196b进行靶基因预测,发现其可能与心肌细胞分化呈负相关,提示其在ESC分化命运决定中可能具有一定的调控作用。这些结果为进一步明确mi RNAs在ESC分化的心肌细胞中的作用提供了新线索。  相似文献   

2.
micro RNAs(mi RNAs)是一类含有20~22个核苷酸的非编码单链小分子RNA,发挥转录后水平负调控基因表达和翻译的作用,具有生物学功能多样性,可作为多种疾病诊断和预后重要分子标志。该文介绍了肌细胞特异性mi RNAs,如mi R-1、mi R-133、mi R-145、mi R-206基因等染色体分布、序列、组织表达丰度、主要通路,并对肌细胞特异性mi RNAs在气管平滑肌、血管平滑肌、心肌等细胞中的生物学效应研究进展进行综述。  相似文献   

3.
目的:前期研究发现,MARVELD1(具有囊泡运输和膜连接功能的MAL及相关蛋白1)在多种肿瘤细胞中表达下调,许多micro RNAs也随其发生变化。本研究探讨了MARVELD1调控mi R-186和mi R-335的表达方式。方法:本研究选取了多种肺癌细胞系,运用q RT-PCR的方法检测了MARVELD1以及mi R-186和mi R-335的表达情况,通过MARVELD1过表达体系和si RNA干扰MARVELD1表达的体系分析mi R-186和mi R-335表达变化情况,运用生物信息学网站对mi R-186和mi R-335进行分析,确认其是否为内含子mi RNA,并进一步应用MARVELD1过表达和RNAi体系检测MARVELD1对mi R-186和mi R-335的宿主基因的影响。结果:在肺癌细胞中,MARVELD1与mi R-186、mi R-335的表达呈现明显的正相关。在过表达MARVELD1之后,mi R-186、mi R-335出现高表达;当下调MARVELD1表达时,mi R-186、mi R-335则表现低表达。生物信息学分析发现mi R-186和mi R-335均为内含子mi RNA。进一步分析MARVELD1与mi R-186和mi R-335宿主基因的表达关系显示,MARVELD1可以上调它们的宿主基因的表达。结论:上述结果表明,MARVELD1可通过影响内含子mi R-186和mi R-335的宿主基因进而调控二者的表达,为进一步研究MARVELD1影响肿瘤细胞的发生机制奠定了基础。  相似文献   

4.
microRNAs(mi RNAs)是一类在转录后水平影响生物体基因表达的小分子非编码RNA,参与调控机体正常发育和疾病发生发展等过程。新近研究发现,循环mi RNA由于具有取样方便和高度稳定性等优点,迅速成为目前的研究热点。micro RNA-155(mi R-155)在多种肿瘤中高表达。循环mi R-155已被证实与多种肿瘤的发生、发展相关,可作为一种分子标志物用于肿瘤的早期诊断和实时监测。该文围绕循环mi R-155作为肿瘤标志物的研究进展予以综述。  相似文献   

5.
在了解肿瘤信号通路方面虽已取得了实质性的进展,但由于肿瘤的致瘤通路、耐药性等方面的复杂性,导致仍然缺乏治疗肿瘤的有效手段。micro RNAs(mi RNAs)的发现为解决这个问题提供了新的希望。mi R-365作为mi RNAs中的重要一员,在肿瘤中频繁的异常表达已经证明其与肿瘤的发生发展及预后息息相关。因此深入研究mi R-365在肿瘤中的表达特点及与相关基因的调控关系将为了解肿瘤细胞周期、增殖、凋亡等生物学功能提供更有效的视点,为肿瘤的临床治疗提供潜在的治疗靶点。现就mi R-365在肿瘤中的表达及与信号通路之间的调控作一简要综述,以揭示mi R-365在肿瘤细胞内的表达调控情况。  相似文献   

6.
Micro RNA(mi RNA)是一类非编码单链小分子RNA,广泛参与人类各种生理、病理过程。最新研究提示,mi RNA在子宫肌瘤中起着重要调控作用,该研究试图对子宫肌瘤组织中差异表达mi RNAs进行表达验证及靶基因鉴定,结果发现,与瘤旁组织相比,mi R-363、mi R-490、mi R-135b等的表达水平在肌瘤组织中有着4~6倍的上调,而mi R-217、mi R-590、mi R-451则下调3~5倍。通过软件预测结合表达定量分析,发现其中mi R-363的靶基因为卵泡激素相互作用蛋白1基因(folliculin interacting protein 1,FNIP1)和溶质载体家族蛋白12成员5(solute carrier family 12 member5,SLC12A5)。mi R-135b的靶基因核受体亚科3 C组,成员2(nuclear receptor subfamily 3,group C,member 2,NR3C2)在肌瘤组织中表达有显著下降,而mi R-590的靶基因锌指蛋白367基因(zinc fi nger protein 367,ZFN367)和去泛素水解酶1基因(yeast OTU deubiquinating enzyme 1 homolog,YOD1)在肌瘤组织中的表达水平显著上升。进一步的报告基因分析发现,其中FNIP1、NR3C2、ZNF367的3′UTR能够与相应的mi RNA结合。分析相同肌瘤样品中表达水平的关系发现,这三个靶基因表达均与相应的mi RNA呈显著的负相关。该研究的发现为子宫肌瘤的分子机制研究和诊治提供了新的参考。  相似文献   

7.
消化系统肿瘤严重危害人类健康,是导致死亡的主要原因,其一直是科学研究的一个重点,也是难点。Micro RNA(mi RNA)是一类广泛存在于生物体内的内源性、非编码、单链小分子RNA,参与调控生物体的几乎所有生命活动,包括多种生理和病理活动。目前研究认为,mi RNAs参与肿瘤的发生和进展。mi R-124是mi RNAs家族的一员,是一个相当保守的mi RNA,在多种肿瘤包括消化系统肿瘤的细胞或组织中均表达下调,扮演着类似抑癌基因的角色,在该类肿瘤的发生、发展以及预后中发挥重要作用。本文就mi R-124在消化系统肿瘤研究中的进展作一综述。  相似文献   

8.
micro RNA是真核生物中一类长约18~25个核苷酸的小分子非编码RNA,它们可以与m RNA的3′-UTR结合在转录后水平调控基因的表达。很多报道表明,mi RNA参与了肿瘤的发生发展调控。mi R-183家族的三个成员mi R-183、mi R-96和mi R-182都与肿瘤密切相关。研究发现,在前列腺癌、肺癌、结肠癌、乳腺癌等肿瘤中mi R-183家族表达异常,其机制是通过调控多种靶基因参与其中。本文综述了mi R-183家族在常见高发肿瘤中的研究现状。  相似文献   

9.
micro RNA(mi RNA)是一类在转录后水平调控目的基因表达的功能性小RNA分子。mi R-17-92基因簇是一个高度保守的基因簇,编码6个mi RNAs,分别为:mi R-17、mi R-18a、mi R-19a、mi R-19b-1、mi R-20a和mi R-92a。细胞自噬(autophagy)是将细胞内受损、变性或衰老的蛋白质以及细胞器运输到溶酶体进行消化降解的过程。mi RNA的异常表达可影响自噬水平,从而影响肿瘤的发生发展。研究证明mi R-17-92基因簇与细胞自噬及肿瘤的发生密切相关,有望成为具有潜在价值的肿瘤标志物或肿瘤治疗的新靶点。现对mi R-17-92基因簇与细胞自噬和肿瘤的关系进行综述。  相似文献   

10.
为对靶向Wnt1的7种mi RNAs进行circ RNAs及其靶基因的预测,同时分析其与circ RNAs及靶基因间的相互作用,分别采用Starbase及mi RWALK软件,对文献报道的靶向Wnt1基因的let-7e、mi R-21、mi R-34a、mi R-122、mi R-148a、mi R-148b与mi R-152等7种mi RNAs的circ RNAs和对应的靶基因进行生物信息学预测.利用Cytoscape 3.2.1对这7种mi RNAs和预测所得到的circ RNAs及对应的靶基因进行网络分析.并进一步对预测到的靶基因通过DAVID软件进行通路分析.Starbase软件对这7种不同mi RNAs所预测的靶circ RNAs的数量分别为58、15、41、20、28、28、28个.分别比较mi RWALK中7~9个以上软件共有的mi RNAs及其与靶基因的关系,发现CHD7基因是唯一一个在三种不同预测范围内与mi R-21、mi R-148a、mi R-148b和mi R-152等4种mi RNAs相对应的靶基因.CNOT6、NBEA、ZFYVE26与ZDHHC17是在两种不同预测范围内与至少4个mi RNAs相对应的靶基因.在7种mi RNAs所预测靶基因相关的KEGG信号通路中,7~9个软件以上共有的信号通路为Focal adhesion信号通路、MAPK信号通路、Notch信号通路与TGF-beta信号通路.在MAPK信号通路中DUSP1与MRPS35_hsa_circ_001042均分别是与mi R-21、mi R-148a、mi R-148b及mi R-152等4种mi RNAs相互作用的靶基因与circ RNA.本研究对靶向Wnt1的mi RNAs及其相互作用的circ RNAs、靶基因与信号通路等进行了网络分析与预测,为进一步分析它们之间的相互作用奠定了基础.  相似文献   

11.
MicroRNAs (miRNAs) are a family of small, non-coding RNA species functioning as negative regulators of multiple target genes including tumour suppressor genes and oncogenes. Many miRNA gene loci are located within cancer-associated genomic regions. To identify potential new amplified oncogenic and/or deleted tumour suppressing miRNAs in lung cancer, we inferred miRNA gene dosage from high dimensional arrayCGH data. From miRBase v9.0 (http://microrna.sanger.ac.uk), 474 human miRNA genes were physically mapped to regions of chromosomal loss or gain identified from a high-resolution genome-wide arrayCGH study of 132 primary non-small cell lung cancers (NSCLCs) (a training set of 60 squamous cell carcinomas and 72 adenocarcinomas). MiRNAs were selected as candidates if their immediately flanking probes or host gene were deleted or amplified in at least 25% of primary tumours using both Analysis of Copy Errors algorithm and fold change (≥±1.2) analyses. Using these criteria, 97 miRNAs mapped to regions of aberrant copy number. Analysis of three independent published lung cancer arrayCGH datasets confirmed that 22 of these miRNA loci showed directionally concordant copy number variation. MiR-218, encoded on 4p15.31 and 5q35.1 within two host genes (SLIT2 and SLIT3), in a region of copy number loss, was selected as a priority candidate for follow-up as it is reported as underexpressed in lung cancer. We confirmed decreased expression of mature miR-218 and its host genes by qRT-PCR in 39 NSCLCs relative to normal lung tissue. This downregulation of miR-218 was found to be associated with a history of cigarette smoking, but not human papilloma virus. Thus, we show for the first time that putative lung cancer-associated miRNAs can be identified from genome-wide arrayCGH datasets using a bioinformatics mapping approach, and report that miR-218 is a strong candidate tumour suppressing miRNA potentially involved in lung cancer.  相似文献   

12.
13.
XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3′ untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes.  相似文献   

14.

Background

The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer.

Results

We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein.

Conclusions

Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.  相似文献   

15.
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.  相似文献   

16.
Fang R  Xiao T  Fang Z  Sun Y  Li F  Gao Y  Feng Y  Li L  Wang Y  Liu X  Chen H  Liu XY  Ji H 《The Journal of biological chemistry》2012,287(27):23227-23235
High glycolysis, well known as "Warburg effect," is frequently observed in a variety of cancers. Whether the deregulation of miRNAs contributes to the Warburg effect remains largely unknown. Because miRNA regulates gene expression at both mRNA and protein levels, we constructed a gene functional association network, which allows us to detect the gene activity instead of gene expression, to integratively analyze the microarray data for gene expression and miRNA expression profiling and identify glycolysis-related gene-miRNA pairs deregulated in cancer. Hexokinase 2 (HK2), coding for the first rate-limiting enzyme of glycolysis, is among the top list of genes predicted and potentially regulated by multiple miRNAs including miR-143. Interestingly, miR-143 expression was inversely associated with HK2 protein level but not mRNA level in human lung cancer samples. miR-143, down-regulated by mammalian target of rapamycin activation, reduces glucose metabolism and inhibits cancer cell proliferation and tumor formation through targeting HK2. Collectively, we have not only established a novel methodology for gene-miRNA pair prediction but also identified miR-143 as an essential regulator of cancer glycolysis via targeting HK2.  相似文献   

17.
Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N?=?217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0) were generated. We focused on dysregulated genes with a fold change (FC) of >?1.50 or <?0.67, that were significant after adjustment for multiple comparisons. miRNA:mRNA seed-region matches were determined. Twenty-three genes were significantly downregulated (FC?<?0.67) and 18 were significantly upregulated (FC?>?1.50). Of these 41 genes, 11 were significantly associated with miRNA differential expression. BIRC5 had the greatest number of miRNA associations (14) and the most miRNAs with a seed-region match (10). Four of these matches, miR-145-5p, miR-150-5p, miR-195-5p, and miR-650, had a negative beta coefficient. CSF2RB was associated with ten total miRNAs (five with a seed-region match, and one miRNA, miR-92a-3p, with a negative beta coefficient). Of the three miRNAs associated with CTSS, miR-20b-5p, and miR-501-3p, had a seed-region match and a negative beta coefficient between miRNA:mRNA pairs. Several miRNAs that were associated with dysregulated gene expression, seed-region matches, and negative beta coefficients also were associated with CRC-specific survival. Our data suggest that miRNAs could influence several apoptosis-related genes. BIRC5, CTSS, and CSF2R all had seed-region matches with miRNAs that would favor apoptosis. Our study identifies several miRNA associated with apoptosis-related genes, that if validated, could be important therapeutic targets.  相似文献   

18.
19.
Three-dimensional organotypic culture using reconstituted basement membrane matrix (rBM 3-D) is an invaluable tool to characterize morphogenesis of epithelial cells and to elucidate the tumor-modulating actions of extracellular matrix. microRNAs (miRNA) are a novel class of tumor modulating genes. A substantial amount of investigation of miRNAs in cancer is carried out using monolayer 2-D culture on plastic substratum, which lacks a consideration of the matrix-mediated regulation of miRNAs. In the current study we compared the expression of miRNAs in rBM 3-D and 2-D cultures of two lung adenocarcinoma cell lines. Our findings revealed a profound difference in miRNA profiles between 2-D and rBM 3-D cultures of lung adenocarcinoma cells. The rBM 3-D culture-specific miRNA profile was highlighted with higher expression of the tumor suppressive miRNAs (i.e., miR-200 family) and lower expression of the oncogenic miRNAs (i.e., miR-17–92 cluster and miR-21) than that of 2-D culture. Moreover, the expression pattern of miR-17, miR-21, and miR-200a in rBM 3-D culture correlated with the expression of their targets and acinar morphogenesis, a differentiation behavior of lung epithelial cells in rBM 3-D culture. Over-expression of miR-21 suppressed its target PTEN and disrupted acinar morphogenesis. In summary, we provide the first miRNA profile of lung adenocarcinoma cells in rBM 3-D culture with respect to acinar morphogenesis. These results indicate that rBM 3-D culture is essential to a comprehensive understanding of the miRNA biology in lung epithelial cells pertinent to lung adenocarcinoma.  相似文献   

20.
MiRNAs are known to regulate gene expression and in the context of cancer have been shown to regulate metastasis, cell proliferation and cell death. In this report we describe potential miRNA regulatory roles with respect to induction of cell death by pharmacologic dose of Epidermal Growth Factor (EGF). Our previous work suggested that multiple pathways are involved in the induction of apoptosis, including interferon induced genes, cytokines, cytoskeleton and cell adhesion and TP53 regulated genes. Using miRNA time course expression profiling of EGF treated A431 cells and coupling this to our previous gene expression and proteomic data, we have been able to implicate a number of additional miRNAs in the regulation of apoptosis. Specifically we have linked miR-134, miR-145, miR-146b-5p, miR-432 and miR-494 to the regulation of both apoptotic and anti-apoptotic genes expressed as a function of EGF treatment. Whilst additional miRNAs were differentially expressed, these had the largest number of apoptotic and anti-apoptotic targets. We found 5 miRNAs previously implicated in the regulation of apoptosis and our results indicate that an additional 20 miRNAs are likely to be involved based on their correlated expression with targets. Certain targets were linked to multiple miRNAs, including PEG10, BTG1, ID1, IL32 and NCF2. Some miRNAs that target the interferon pathway were found to be down regulated, consistent with a novel layer of regulation of interferon pathway components downstream of JAK/STAT. We have significantly expanded the repertoire of miRNAs that may regulate apoptosis in cancer cells as a result of this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号