首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
功能基因组学的研究重心是在整体水平上对细胞内蛋白质的组成及其活动规律进行研究,化学遗传学利用小分子化合物系统地探测生命过程的机制和蛋白质功能,为功能基因组学的研究提供了有力的工具。该文综述了化学遗传学在功能基因组学研究中的最新进展。  相似文献   

2.
张美婷  丁明 《生命科学》2023,(6):816-823
药物开发过程面临多重挑战,而靶标确证是其中的重要一环。如何运用多种研究方法发现和确认小分子药物的靶标是目前研究人员的主要工作内容之一。化学蛋白质组学整合了细胞生物学、合成化学和生物质谱等多门学科,为药物的靶标筛选提供了新平台。本文对近年来发展的基于生物质谱的化学蛋白质组学药物靶标鉴定技术进行了总结,结合具体应用分析其优缺点,并对该类技术的发展和应用进行总结和展望。  相似文献   

3.
湖南师范大学蛋白质化学与蛋白质组学研究室成立于1991年。目前,实验室负责人为梁宋平教授。现该研究室隶属于蛋白质化学与发育生物学教育部重点实验室,所属学科是湖南省生物化学与分子生物学重点学科,主要研究方向为动物多肽毒素的结构与功能研究和蛋白质组学技术发展与应用研究。  相似文献   

4.
真菌感染特别是侵袭性感染严重威胁人类健康,而我们应对真菌感染的药物种类却很少。基于细胞表型变化的抗真菌药物筛选,容易获得活性先导物,但后续对其作用靶点和作用机制的研究通常需要耗费更多的时间和精力,这已成为抗真菌药物研发的瓶颈。识别活性化合物的分子靶点,对于进一步优化改造先导物获得高效低毒的候选药物至关重要。化学基因组学能在活细胞基因组水平上发现先导物的作用靶点,利用该策略,近年来已有多个抗真菌先导物发现了作用靶点。该文主要介绍了化学基因组学的技术特点,以及近年来在发现抗真菌先导物作用靶点方面的应用。  相似文献   

5.
植物化学遗传学:一种崭新的植物遗传学研究方法   总被引:1,自引:0,他引:1  
化学遗传学(chemical genetics,也称为化学基因组学,chemical genomics)研究方法是利用生物活性小分子扰动蛋白分子互作过程来研究有关的生命现象,是常规遗传学研究方法的补充和延伸。化学遗传学在植物科学中的应用——植物化学遗传学的研究在短短几年内,凭借其作为一种新的遗传学研究方法所具备的独特优势(如能够克服常规遗传学研究中的遗传冗余、突变致死难题及可提供特异强度、作用时间点上的条件性遗传扰动等),已开始解决一些植物分子生物学中长期存在的研究难题。本文就植物化学遗传学的一般原理及其方法,以及它作为一种新的遗传学研究方法的优势及特点作一个综述.  相似文献   

6.
非模式植物蛋白质组学研究进展   总被引:1,自引:0,他引:1  
蛋白质组学研究是对基因组学研究的重要补充,它是在蛋白质水平定量、动态、整体性研究生物体。该文简要介绍了蛋白质组学的含义,蛋白质组学及植物蛋白质组学产生的科学背景,蛋白质组学的研究内容。概述了非模式植物蛋白质组学的研究进展,主要包括非模式植物个体及群体蛋白质组学,组织和器官蛋白质组学,亚细胞蛋白质组学,响应环境变化的蛋白质组学以及非模式植物生物环境因子的蛋白质组学的研究情况,同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

7.
许多微生物的次生代谢物属于小分子活性化合物,在医疗及农业领域发挥着重要的作用。在基因组学、蛋白质组学与生物信息学等技术的推动下,一些新的小分子药物靶标寻找方法应运而生了,这些新的方法主要是基于细胞中基因或蛋白质的表达量、蛋白质的亲和性、稳定性等各种特性进行靶标寻找的。小分子药物靶标寻找方法的发展加快了阐明小分子药物作用机理的历程,也为发现新的靶标资源以便于进一步筛选活性更高的药物提供了技术保障。  相似文献   

8.
绿色新农药的开发和利用有利于农业的可持续发展,基于天然产物进行活性先导发现及作用机制研究是重要的新农药创制策略,然而其作用靶标和作用机制难以确定,阻碍了其在新农药中的应用。因此发现化合物新靶点对于新农药创制来说是一项既重要又艰巨的任务。化学蛋白质组学作为后基因组时代的新技术,目前已经成为研究药物靶点的重要手段之一。本文对基于化学蛋白组学的化合物作用分子靶点发现方法和典型案例进行探析,介绍这些技术的主要原理、应用以及各自的优点和局限性,旨在阐述基于化学蛋白质组学发现药物作用靶标的最新方法,并为天然产物靶点及新农药创制研究提供参考。  相似文献   

9.
丝状真菌不仅是致病菌,而且在异源表达工业酶、化学制品以及药物活性物质中发挥着越来越重要的作用。随着人类基因组计划的实施和推进,生命科学研究已进入了功能基因组时代,特别是蛋白质组学,在蛋白质水平对丝状真菌细胞生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,对生命的复杂活动进行深入而又全面的认识也为丝状真菌工业酶制剂和重组药物的开发提供广阔的创新空间。本文综述了蛋白质组学的研究内容和方法,总结了其在丝状真菌致病菌、抗生素产生菌和纤维素酶产生菌中的应用现状。不同层次的功能基因组学分析可以从各个角度掌握生物体的代谢网络和调控机制,本文还对蛋白质组学以及功能基因组学各部分内容的整合运用进行了展望。  相似文献   

10.
后基因组时代的植物蛋白质组学   总被引:12,自引:0,他引:12  
蛋白质组学是后基因组时代功能基因组学研究的新兴学科和热点领域。简要介绍了蛋白质组学产生的科学背景、研究内容和研究方法。重点综述了植物个体水平、组织、器官和亚细胞水平蛋白组研究 ,植物蛋白质组学在植物遗传多样性、遗传突变体、植物的逆境生理等方面的研究进展。最后展望了今后的发展前景。  相似文献   

11.
Macroautophagy/autophagy is an evolutionarily well-conserved cellular degradative process with important biological functions that is closely implicated in health and disease. In recent years, quantitative mass spectrometry-based proteomics and chemical proteomics have emerged as important tools for the study of autophagy, through large-scale unbiased analysis of the proteome or through highly specific and accurate analysis of individual proteins of interest. At present, a variety of approaches have been successfully applied, including (i) expression and interaction proteomics for the study of protein post-translational modifications, (ii) investigating spatio-temporal dynamics of protein synthesis and degradation, and (iii) direct determination of protein activity and profiling molecular targets in the autophagic process. In this review, we attempted to provide an overview of principles and techniques relevant to the application of quantitative and chemical proteomics methods to autophagy, and outline the current landscape as well as future outlook of these methods in autophagy research.  相似文献   

12.
The Human Genome Project has fueled the massive information-driven growth of genomics and proteomics and promises to deliver new insights into biology and medicine. Since proteins represent the majority of drug targets, these molecules are the focus of activity in pharmaceutical and biotechnology organizations. In this article, we describe the processes by which computational drug design may be used to exploit protein structural information to create virtual small molecules that may become novel medicines. Experimental protein structure determination, site exploration, and virtual screening provide a foundation for small molecule generation in silico, thus creating the bridge between proteomics and drug discovery.  相似文献   

13.

Background  

Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks.  相似文献   

14.
Advances in genomics and proteomics have opened up new possibilities for the rapid functional assignment and global characterization of proteins. Large-scale studies have accelerated this effort by using tools and strategies that enable highly parallel analysis of huge repertoires of biomolecules. Organized assortments of molecules on arrays have furnished a robust platform for rapid screening, lead discovery and molecular characterization. The essential advantage of microarray technology is attributed to the massive throughput attainable, coupled with a highly miniaturized platform--potentially driving discovery both as an analytical and diagnostic tool. The scope of microarrays has in recent years expanded impressively. Virtually every biological component--from diverse small molecules and macromolecules (such as DNA and proteins) to entire living cells--has been harnessed on microarrays in attempts to dissect the bewildering complexity of life. Herein we highlight strategies that address challenges in proteomics using microarrays of immobilized proteins and small molecules. Of specific interest are the techniques involved in stably immobilizing proteins and chemical libraries on slide surfaces as well as novel strategies developed to profile activities of proteins on arrays. As a rapidly maturing technology, microarrays pave the way forward in high-throughput proteomic exploration.  相似文献   

15.
Techniques involving solid supports have played crucial roles in the development of genomics, proteomics, and in molecular biology in general. Similarly, methods for immobilization or attachment to surfaces and resins have become ubiquitous in sequencing, synthesis, analysis, and screening of oligonucleotides, peptides, and proteins. However, solid-phase tools have been employed to a much lesser extent in glycobiology and glycomics. This review provides a comprehensive overview of solid-phase chemical tools for glycobiology including methodologies and applications. We provide a broad perspective of different approaches, including some well-established ones, such as immobilization in microtiter plates and to cross-linked polymers. Emerging areas such as glycan microarrays and glycan sequencing, quantum dots, and gold nanoparticles for nanobioscience applications are also discussed. The applications reviewed here include enzymology, immunology, elucidation of biosynthesis, and systems biology, as well as first steps toward solid-supported sequencing. From these methods and applications emerge a general vision for the use of solid-phase chemical tools in glycobiology.  相似文献   

16.
17.
Determining small molecule—target protein interaction is essential for the chemical proteomics. One of the most important keys to explore biological system in chemical proteomics field is finding first-class molecular tools. Chemical probes can provide great spatiotemporal control to elucidate biological functions of proteins as well as for interrogating biological pathways. The invention of bioorthogonal chemistry has revolutionized the field of chemical biology by providing superior chemical tools and has been widely used for investigating the dynamics and function of biomolecules in live condition. Among 20 different bioorthogonal reactions, tetrazine ligation has been spotlighted as the most advanced bioorthogonal chemistry because of their extremely faster kinetics and higher specificity than others. Therefore, tetrazine ligation has a tremendous potential to enhance the proteomic research. This review highlights the current status of tetrazine ligation reaction as a molecular tool for the chemical proteomics.  相似文献   

18.
Proteomics is the study of the protein complement of a genome and employs a number of newly emerging tools. One such tool is chemical proteomics, which is a branch of proteomics devoted to the exploration of protein function using both in vitro and in vivo chemical probes. Chemical proteomics aims to define protein function and mechanism at the level of directly observed protein–ligand interactions, whereas chemical genomics aims to define the biological role of a protein using chemical knockouts and observing phenotypic changes. Chemical proteomics is therefore traditional mechanistic biochemistry performed in a systems-based manner, using either activity- or affinity-based probes that target proteins related by chemical reactivities or by binding site shape/properties, respectively. Systems are groups of proteins related by metabolic pathway, regulatory pathway or binding to the same ligand. Studies can be based on two main types of proteome samples: pooled proteins (1 mixture of N proteins) or isolated proteins in a given system and studied in parallel (N single protein samples). Although the field of chemical proteomics originated with the use of covalent labeling strategies such as isotope-coded affinity tagging, it is expanding to include chemical probes that bind proteins noncovalently, and to include more methods for observing protein–ligand interactions. This review presents an emerging role for nuclear magnetic resonance spectroscopy in chemical proteomics, both in vitro and in vivo. Applications include: functional proteomics using cofactor fingerprinting to assign proteins to gene families; gene family-based structural characterizations of protein–ligand complexes; gene family-focused design of drug leads; and chemical proteomic probes using nuclear magnetic resonance SOLVE and studies of protein–ligand interactions in vivo.  相似文献   

19.
Contributions of Microorganisms to Industrial Biology   总被引:1,自引:0,他引:1  
Life on earth is not possible without microorganisms. Microbes have contributed to industrial science for over 100 years. They have given us diversity in enzymatic content and metabolic pathways. The advent of recombinant DNA brought many changes to industrial microbiology. New expression systems have been developed, biosynthetic pathways have been modified by metabolic engineering to give new metabolites, and directed evolution has provided enzymes with modified selectability, improved catalytic activity and stability. More and more genomes of industrial microorganisms are being sequenced giving valuable information about the genetic and enzymatic makeup of these valuable forms of life. Major tools such as functional genomics, proteomics, and metabolomics are being exploited for the discovery of new valuable small molecules for medicine and enzymes for catalysis.  相似文献   

20.
Natural products are a tremendous source of tool discovery for basic science and drug discovery for clinical uses. In contrast to the large number of compounds isolated from nature, however, the number of compounds whose target molecules have been identified so far is fairly limited. Elucidation of the mechanism of how bioactive small molecules act in cells to induce biological activity (mode of action) is an attractive but challenging field of basic biology. At the same time, this is the major bottleneck for drug development of compounds identified in cell-based and phenotype-based screening. Although researchers’ experience and inspiration have been crucial for successful target identification, recent advancements in genomics, proteomics, and chemical genomics have made this challenging task possible in a systematic fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号