首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑腹果蝇的性别控制   总被引:4,自引:0,他引:4  
王慧超  朱勇  夏庆友 《遗传》2003,25(1):97-101
性别的形成包括两个过程,即性别决定和性别分化。果蝇的性别控制研究包括性别决定、性别分化、性别鉴定、性别诱导和性别控制5个方面。性别决定是在两种不同发育途径之间的选择,它提供了一个研究基因调控的模式系统。果蝇的性别决定问题已经研究得相当详细[1]。性别分化是使胚胎向着雌性或雄性发育的过程,决定了性别表型。果蝇的性别分化也取得了不少研究成果。近年来,许多重要的性别调控基因已被克隆和鉴定。随着果蝇基因组全序列测定的完成,果蝇的性别控制研究将会更为深入而完善。本文对与黑腹果蝇性别决定和性别分化相关的一些问题进行综述。  相似文献   

2.
脊椎动物性别决定和分化的分子机制研究进展   总被引:9,自引:1,他引:8  
哺乳类性别决定是多种转录因子和生长因子相继表达和相互调控的结果。SRY的表达启动雄性通路并诱导下游雄性特异基因SOX9、AMH等的表达。FOXL2在雌性未分化性腺表达,WNT-4和DAX1也在雌性性别决定或分化时期表达,表明雌性通路也是受特定基因调控的,而并非“默认通路”。鸟类的性别也是由遗传基因决定的,EFT1(雌性)和DMRT1(雄性)可能是性别决定候选基因。爬行类为温度性别决定的典型,温度可能通过调节雌激素水平和控制性别特异遗传基因表达决定性别。大部分两栖类性别受环境因素影响,但发现DMRT1和DAX1可能与其精巢发育有关。鱼类性别决定和分化方式差异很大,多种因素(遗传基因、环境因素、类固醇激素等)参与了这一过程。从青Q鳉Y染色体定位克隆的DMY,被认为是第一个非哺乳类脊椎动物雄性性别决定基因。所有这些表明脊椎动物性别决定和分化机制是多样化的。  相似文献   

3.
果蝇是生物性别调控的重要参考模式生物之一,其性别决定是由X染色体与常染色体的比值(X:A)所决定。此性别决定初级信号通过下游基因sex-lethal(sxl)、transformer(tra)、doublesex(dsx)等选择性拼接的级联调控作用,最终使果蝇发育为雌性或雄性。rbp1是参与果蝇雌特异性拼接的一个重要拼接因子,属于丝氨酸精氨酸富集蛋白家族,是常染色体上的单拷贝基因,它通过调节dsx前体mRNA的选择性拼接来调控果蝇的性别。[第一段]  相似文献   

4.
5.
长期以来雌性脊椎动物的性别分化被认为是一个"默认"的程序.但是近些年研究发现,Rspo1基因的突变或缺失可导致哺乳动物XX型个体性反转为雄性.Rspo1在鱼类、两栖爬行类、鸟类和哺乳类动物性腺发育的不同阶段表达,其表达在雌雄个体性别分化时期有差异,是潜在的性别调控基因.Rspo1在性别发育早期可通过Wnt/β-catenin信号通路调控性腺分化相关因子的表达,影响原始生殖细胞分裂增殖、细胞周期和生长发育,参与调控性腺中体细胞的分化.本文总结了近年来Rspo1在脊椎动物中的表达调控及其在雌性性别决定方面功能的研究进展.  相似文献   

6.
长期以来雌性脊椎动物的性别分化被认为是一个“默认”的程序.但是近些年研究发现,Rspo1基因的突变或缺失可导致哺乳动物XX型个体性反转为雄性.Rspo1在鱼类、两栖爬行类、鸟类和哺乳类动物性腺发育的不同阶段表达,其表达在雌雄个体性别分化时期有差异,是潜在的性别调控基因.Rspo1在性别发育早期可通过Wnt/β-catenin信号通路调控性腺分化相关因子的表达,影响原始生殖细胞分裂增殖、细胞周期和生长发育,参与调控性腺中体细胞的分化.本文总结了近年来Rspo1在脊椎动物中的表达调控及其在雌性性别决定方面功能的研究进展.  相似文献   

7.
8.
哺乳动物的性腺由生殖细胞和体细胞共同形成,性别决定前的性腺具有双向分化的潜能,性腺中体细胞的分化决定其发育为睾丸或卵巢。这一分化过程受到多种因子的精细调控。其中SRY、SOX9、SOX3、SOX8、SOX10、FGF9/FGFR2、PGD2、AMH和DMRT1等参与睾丸的发育和分化,而FOXL2、CTNNB1、RSPO1、WNT4、Follistatin、ERα/β和BMP2则在卵巢发育过程中发挥关键作用。如果这些分子调控网络受到内源性或外源性因子的破坏,则会引起两性发育紊乱,甚至导致雄性向雌性或雌性向雄性的性别逆转。本文以小鼠模型为例,阐述了在性别决定过程中体细胞命运决定以及谱系分化的分子调控网络。  相似文献   

9.
哺乳动物性别分化调控的分子机制的研究特别是性别分化的层次调控、剂量补偿和性染色体进化这三个领域,已取得快速进展。已经发现Y染色体性别决定区基因(SRY)、X染色体DSS-AHC决定区基因1(DAX-1)、甾类生成因子1基因(SF1)和Wilms瘤抑制基因(WT-1)等与哺乳动物性别决定有关。SRY启动睾丸分化,但胚胎发育成雄性的其余步骤由事丸分泌的激素控制。DAX-1且编码一种女性特异功能的蛋白质,它在男性中被SRY所抑制。SF-1和WT-1在SRY开启之前作用于性腺和肾上腺发育的启动。哺乳动物通过随机失活雌性两条X染色体中的一条来使X连锁的基因在两性间的表达水平达到平衡(剂量补偿)。X染色体失活由X染色体失活中心(XIC)控制。失活的X染色体专一转录基因(XIST)是XIC的强烈候选者,它可能参与X失活的启动。对有袋目和单孔目动物性染色体的研究为我们提供了其进化的信息。有证据支持性染色体起源于一对同源常染色体,而SRY的祖先基因可能是SOX-3。  相似文献   

10.
性别决定基因   总被引:2,自引:0,他引:2  
在个体发育过程中,动物的种类不同,性别决定的方式亦有差异。这取决于胚胎早期不同的性别初级信号对性别决定基因的启动和活化,活化的性别决定基因启动性别分化基因的表达,使个体的性别表现出来。本文略述与线虫、果蝇等的性别决定有关的基因。线虫(Caenorhabditis elegans)体长约1mm,雌雄同体,自体受精。有两条 X 染色体(XX);XO型线虫为雄性。线虫(C.elegans)性别决定的初级信号是 X 染色体与常染色体的比率(X∶  相似文献   

11.
在大部分脊椎动物中,Dmrt1基因在雄性性别决定和性腺分化中起重要的调控作用.本文从m RNA和蛋白水平分析Dmrt1基因的组织差异性表达、在不同发育阶段性腺中的细胞定位及在性逆转中的表达变化,研究Dmrt1基因在中华鳖性别分化中的调控作用.Rapid-amplification of c DNA ends(RACE)结果显示,Dmrt1基因c DNA序列全长2409 bp,其中5′非编码区为230 bp,3′非编码区为1072 bp,开放阅读框为1107 bp,编码368个氨基酸,具有一个高度保守的DM结构域.荧光定量PCR和免疫组化结果显示,Dmrt1在性腺分化之前的第16期雄性性腺中开始表达,先于Amh和Sox9基因表达.随着性腺的发育,Dmrt1蛋白主要定位于性腺Sertoli细胞的细胞核上,在雌性性腺发育过程中并未见其表达.此外,在雌二醇诱导的雄性转雌性性逆转胚胎性腺中,Dmrt1表达显著下调;在芳香化酶抑制剂诱导的雌性转雄性性腺中,Dmrt1表达则显著上升.上述研究表明,Dmrt1基因是中华鳖雄性特异性基因,参与雄性性腺的发育过程,可能在中华鳖早期性别决定中起重要的调控作用.  相似文献   

12.
为了阐明Amh基因在中华鳖雄性性别分化中的调控作用,本研究对Amh基因进行cDNA序列克隆和表达分析,同时通过慢病毒介导的RNA干扰技术对Amh基因进行了功能验证.RACE结果显示,中华鳖Amh基因的cDNA序列全长为3233 bp,5'非翻译区为997 bp,3'非翻译区为834 bp,可读框为1401 bp,编码466个氨基酸.实时荧光定量PCR结果显示,在成体组织中,Amh基因在睾丸中高度特异性表达;在胚胎发育过程中Amh基因在性别分化启动前的第16期便开始呈现雄性特异性表达,并贯穿此后整个发育时期,而在雌性性腺中则维持非常低的表达水平.在芳香化酶抑制剂诱导的雌性向雄性性逆转胚胎性腺中Amh表达显著上升;在雌二醇诱导的雄性向雌性性腺中,Amh表达则显著下降.RNA干扰实验表明,Amh基因敲低后,ZZ(基因型雄性)胚胎性腺外形和组织结构明显雌性化,皮质区发育,而髓质区高度退化,出现雄性转雌性的性逆转现象;同时雄性分化相关基因Sox9表达下调,而雌性分化相关基因Cypl9al表达则急剧上调.上述结果表明,中华鳖Amh是雄性特异性因子,在早期雄性性别分化过程中是必需的关键基因,本研究为中华鳖性别决定机制研究奠定了基础.  相似文献   

13.
哺乳动物性别分化的调控   总被引:2,自引:0,他引:2  
哺乳动物性别分化调控的分子机制的研究特别是性别分化的层次调控、剂量补偿和性染色体进化这三个领域,已取得快速进展。已经发现Y染色体性别决定区基因(SRY)、X染色体DSS-AHC决定区基因1(DAX-1)、甾类生成因子1基因(SF1)和Wilms瘤抑制基因(WT-1)等与哺乳动物性别决定有关。SRY启动睾丸分化,但胚胎发育成雄性的其余步骤由睾丸分泌的激素控制。DAX-1编码一种女性特异功能的蛋白质,  相似文献   

14.
性决定是指个体的性通过基因或环境决定的机制。性分化指雌性或雄性生殖器官的发育,它是由个体的基因修饰所决定。在自然界中不存在统一的性决定机制,即性决定具有多样性:有的是由染色体系统决定;有的是由卵子受精与否决定;有的是由基因差别、体内激素,或环境因素决定等。  相似文献   

15.
哺乳动物性腺分化的分子子基础宋平,胡珈瑞(武汉大学生命科学院,武汉430072)1性别决定和分化哺乳动物性别决定和分化始于建立染色体性别时卵细胞受精的那一瞬间。有一条正常Y染色体的哺乳动物为雄性,缺少Y染色体的则为雌性;Y染色体上含有SRY(Sexd...  相似文献   

16.
Sun MQ  Lin P  Chen Y  Wang YL  Zhang ZP 《遗传》2012,34(5):533-544
剂量补偿效应(Dosage compensation effect)广泛存在于两性真核生物,是基于性别决定、平衡不同性别间基因转录水平的遗传效应。MSL复合物(Male-specific lethal complex)是果蝇剂量补偿机制的核心,它乙酰化雄性果蝇X染色体上一些特定的位点,双倍激活X连锁活跃基因的转录,从而弥补雄性果蝇只具有单一条X染色体的不足。目前,已对果蝇MSL复合物各主要成分进行了结构分析,大体了解了各组分间的相互作用位点,并对该复合物的识别机制进行了大量的研究。与果蝇不同,哺乳动物是通过雌性个体一条X染色体的失活来实现剂量补偿。虽然哺乳动物MSL复合物的组成已被鉴定,但对其功能的研究还处于初步阶段。迄今为止,对硬骨鱼类剂量补偿及MSL复合物的研究极少。文章概括了线虫、果蝇和哺乳动物各物种剂量补偿机制的异同,综述了果蝇MSL复合物及其剂量补偿机制作用机理的研究进展,并提出有待解决的问题,同时利用同线性分析发现了不同鱼类msl3基因的多样性,为今后继续研究各物种的剂量补偿机制提供基础资料和研究方向。  相似文献   

17.
孙敏秋  林鹏  陈芸  王艺磊  张子平 《遗传》2012,34(5):533-544
剂量补偿效应(Dosage compensation effect)广泛存在于两性真核生物, 是基于性别决定、平衡不同性别间基因转录水平的遗传效应。MSL复合物(Male-specific lethal complex)是果蝇剂量补偿机制的核心, 它乙酰化雄性果蝇X染色体上一些特定的位点, 双倍激活X连锁活跃基因的转录, 从而弥补雄性果蝇只具有单一条X染色体的不足。目前, 已对果蝇MSL复合物各主要成分进行了结构分析, 大体了解了各组分间的相互作用位点, 并对该复合物的识别机制进行了大量的研究。与果蝇不同, 哺乳动物是通过雌性个体一条X染色体的失活来实现剂量补偿。虽然哺乳动物MSL复合物的组成已被鉴定, 但对其功能的研究还处于初步阶段。迄今为止, 对硬骨鱼类剂量补偿及MSL复合物的研究极少。文章概括了线虫、果蝇和哺乳动物各物种剂量补偿机制的异同, 综述了果蝇MSL复合物及其剂量补偿机制作用机理的研究进展, 并提出有待解决的问题, 同时利用同线性分析发现了不同鱼类msl3基因的多样性, 为今后继续研究各物种的剂量补偿机制提供基础资料和研究方向。  相似文献   

18.
鱼类性别决定和分化机制极为复杂,通过性腺组织切片鉴定得出黄河鲤从未分化性腺发育为Ⅱ期精巢、卵巢的时间为受精后第40天到第80天。选取一些可能参与黄河鲤性别决定分化相关的基因(amh、ar、cyp19a、cyp19b、dax1、dmrt1、er、foxl2、nobox、sox9a、sox9b、zp2)进行实时荧光定量PCR分析各个基因在受精后40d、45d、50d、55d、65d和80d的表达情况。结果显示性别决定相关基因在50d都有高表达,推测45-50 d为性别决定的关键时间。ar、amh、dax1、dmrt1、sox9a、sox9b六个基因在80d雄性表达量升高,且雄性明显高于雌性,推测这些基因参与精巢分化发育过程。cyp19a、cyp19b、foxl2、nobox、zp2五个基因在80d雌性表达升高,且高于雄性,推测其可能参与卵巢分化发育。  相似文献   

19.
鸡Z染色体上DMRT1基因的多重跨染色体剪接   总被引:1,自引:0,他引:1  
性别决定与分化发育是同时涉及生命现象中两种细胞分裂(有丝分裂和减数分裂)形式的惟一的分化发育过程。对该过程中关键基因DMRT1的转录分析,发现位于鸡Z染色体上的DMRT1基因分别同时与4号染色体上的CENPC1基因、5号染色体上CD5R基因和2号染色体上37LRP/p40基因发生跨染色体剪接,由此构成了新的跨染色体剪接本DMRT1-CENPC1、DMRT1-CD5R和DMRT1-37LRP/p40。对其剪接位点的分析,发现两段染色体序列存在的重叠区可能在这种剪接中起着重要作用。DMRT1基因在转录过程中同时与多个染色体上基因发生多次跨染色体剪接的发现,无疑有助于对在转录水平上的多样性基因调控以及性别决定与分化发育等的认识开辟另一新途径。  相似文献   

20.
对美味猕猴桃同一雌株叶原生质体再生植株进行了形态学、细胞学以及育性特性的比较研究,确认该体细胞无性系性别性状发生变异。其中60%雄性再生植株退化的雌蕊仍保留不同程度的雌性化特征,但雌性全不育;小孢子则能发育成有功能的雄配子体,但有一定的功能缺陷。再生雌株中P1组群性状特征与母株相似;P2组群花发育畸形,导致雌性不育或育性极差。细胞学研究表明,小孢子母细胞减数分裂时染色体异常行为对小孢子发生的影响不能决定其性别类型;雌株类型小孢子败育过程有受基因调控的细胞学特征。认为雌株和雄株小孢子的发育受控于不同的基因体系,具性别的特异性。再生植株性别性状发生变异可能是性别控制基因或染色体发生结构性变异所致。母株染色体上累积的结构性变异与该遗传基础具易变性密切有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号