首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ng G  Seabolt S  Zhang C  Salimian S  Watkins TA  Lu H 《Genetics》2011,189(3):851-859
Properly coordinated defense signaling networks are critical for the fitness of plants. One hub of the defense networks is centered on salicylic acid (SA), which plays a key role in activating disease resistance in plants. However, while a number of genes are known to affect SA-mediated defense, relatively little is known about how these gene interact genetically with each other. Here we exploited the unique defense-sensitized Arabidopsis mutant accelerated cell death (acd) 6-1 to dissect functional relationships among key components in the SA hub. We show that while enhanced disease susceptibility (eds) 1-2 and phytoalexin deficient (pad) 4-1 suppressed acd6-1-conferred small size, cell death, and defense phenotypes, a combination of these two mutations did not incur additive suppression. This suggests that EDS1 and PAD4 act in the same signaling pathway. To further evaluate genetic interactions among SA regulators, we constructed 10 pairwise crosses in the acd6-1 background among mutants defective in: SA INDUCTION-DEFICIENT 2 for SA biosynthesis; AGD2-LIKE DEFENSE 1, EDS5, and PAD4 for SA accumulation; and NONEXPRESSOR OF PR GENES 1 for SA signaling. Systematic analysis of the triple mutants based on their suppression of acd6-1-conferred phenotypes revealed complex and interactive genetic relationships among the tested SA genes. Our results suggest a more comprehensive view of the gene networks governing SA function and provide a framework for further interrogation of the important roles of SA and possibly other signaling molecules in regulating plant disease resistance.  相似文献   

2.
Lu H  Rate DN  Song JT  Greenberg JT 《The Plant cell》2003,15(10):2408-2420
The previously reported Arabidopsis dominant gain-of-function mutant accelerated cell death6-1 (acd6-1) shows spontaneous cell death and increased disease resistance. acd6-1 also confers increased responsiveness to the major defense signal salicylic acid (SA). To further explore the role of ACD6 in the defense response, we cloned and characterized the gene. ACD6 encodes a novel protein with putative ankyrin and transmembrane regions. It is a member of one of the largest uncharacterized gene families in higher plants. Steady state basal expression of ACD6 mRNA required light, SA, and an intact SA signaling pathway. Additionally, ACD6 mRNA levels were increased in the systemic, uninfected tissue of Pseudomonas syringae-infected plants as well as in plants treated with the SA agonist benzothiazole (BTH). A newly isolated ACD6 loss-of-function mutant was less responsive to BTH and upon P. syringae infection had reduced SA levels and increased susceptibility. Conversely, plants overexpressing ACD6 showed modestly increased SA levels, increased resistance to P. syringae, and BTH-inducible and/or a low level of spontaneous cell death. Thus, ACD6 is a necessary and dose-dependent activator of the defense response against virulent bacteria and can activate SA-dependent cell death.  相似文献   

3.
We isolated a dominant gain-of-function Arabidopsis mutant, accelerated cell death 6 (acd6), with elevated defenses, patches of dead and enlarged cells, reduced stature, and increased resistance to Pseudomonas syringae. The acd6-conferred phenotypes are suppressed by removing a key signaling molecule, salicylic acid (SA), by using the nahG transgene, which encodes SA hydroxylase. This suppression includes phenotypes that are not induced by application of SA to wild-type plants, indicating that SA acts with a second signal to cause many acd6-conferred phenotypes. acd6-nahG plants show hyperactivation of all acd6-conferred phenotypes after treatment with a synthetic inducer of the SA pathway, benzo(1,2, 3)thiadiazole-7-carbothioic acid (BTH), suggesting that SA acts with and also modulates the levels and/or activity of the second defense signal. acd6 acts partially through a NONEXPRESSOR OF PR 1 (NPR1) gene-independent pathway that activates defenses and confers resistance to P. syringae. Surprisingly, BTH-treated acd6-nahG plants develop many tumor-like abnormal growths, indicating a possible role for SA in modulating cell growth.  相似文献   

4.
Wang GF  Seabolt S  Hamdoun S  Ng G  Park J  Lu H 《Plant physiology》2011,156(3):1508-1519
The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants.  相似文献   

5.
Greenberg JT  Silverman FP  Liang H 《Genetics》2000,156(1):341-350
Salicylic acid (SA) is required for resistance to many diseases in higher plants. SA-dependent cell death and defense-related responses have been correlated with disease resistance. The accelerated cell death 5 mutant of Arabidopsis provides additional genetic evidence that SA regulates cell death and defense-related responses. However, in acd5, these events are uncoupled from disease resistance. acd5 plants are more susceptible to Pseudomonas syringae early in development and show spontaneous SA accumulation, cell death, and defense-related markers later in development. In acd5 plants, cell death and defense-related responses are SA dependent but they do not confer disease resistance. Double mutants with acd5 and nonexpressor of PR1, in which SA signaling is partially blocked, show greatly attenuated cell death, indicating a role for NPR1 in controlling cell death. The hormone ethylene potentiates the effects of SA and is important for disease symptom development in Arabidopsis. Double mutants of acd5 and ethylene insensitive 2, in which ethylene signaling is blocked, show decreased cell death, supporting a role for ethylene in cell death control. We propose that acd5 plants mimic P. syringae-infected wild-type plants and that both SA and ethylene are normally involved in regulating cell death during some susceptible pathogen infections.  相似文献   

6.
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.  相似文献   

7.
The small phenolic molecule salicylic acid (SA) plays a key role in plant defense. Significant progress has been made recently in understanding SA-mediated defense signaling networks. Functional analysis of a large number of genes involved in SA biosynthesis and regulation of SA accumulation and signal transduction has revealed distinct but interconnecting pathways that orchestrate the control of plant defense. Further studies utilizing combinatorial approaches in genetics, molecular biology, biochemistry and genomics will uncover finer details of SA-mediated defense networks as well as further insights into the crosstalk of SA with other defense signaling pathways. The complexity of defense networks illustrates the capacity of plants to integrate multiple developmental and environmental signals into a tight control of the costly defense responses.Key words: salicylic acid, disease resistance, signal transduction, Arabidopsis, Pseudomonas syringaePlants have evolved sophisticated defense mechanisms to ward off attacks from pathogens. In addition to pre-formed physical/chemical barriers, plants can actively monitor the presence of pathogens and subsequently activate defense signaling networks, which in turn restrict the further growth and spread of pathogens.The small phenolic compound salicylic acid (SA) plays a central role in plant defense signaling. It is required for recognition of pathogen-derived components and subsequent establishment of local resistance in the infected region as well as systemic resistance at the whole plant level.13 SA accumulation is inducible upon infections of various pathogens, treatment with elicitors from pathogens, and stress conditions.35 Exogenous application of SA and its synthetic analogs to plants is sufficient to invoke disease resistance.69 Disruption of SA accumulation and/or signaling by mutations or by a transgenic SA hydrolase encoded by the bacterial gene nahG greatly compromises defense against pathogens.10 In addition, the phytohormones jasmonic acid (JA) and ethylene (ET) regulate SA-mediated defense as well as many aspects of plant development. Emerging evidence also implicates additional phytohormones in plant defense, two of which, auxin and abscisic acid, were recently shown to impact the SA pathway.11,12The past two decades have witnessed exciting progress made towards a comprehensive understanding of defense networks in the model plant Arabidopsis, especially those regulated by SA. The discovery of an expanding array of genes involved in SA-mediated defense suggests the complexity of defense networks. Surprisingly, information on functional relationships among many defense genes is sparse. Connecting the dots (genes) on the defense map to form pathways, which are further interconnected into complex defense networks, still remains a challenging task. This review focuses on our current understanding of the interactions among genes that regulate three key sub-circuits of the SA pathway: SA biosynthesis, SA accumulation and SA signal transduction. Discussions of the crosstalk between components involved in the SA pathway and those in other defense pathways can be found in some excellent reviews.1317  相似文献   

8.
Salicylic acid (SA) is implicated in the induction of programmed cell death (PCD) associated with pathogen defense responses because SA levels increase in response to PCD-inducing infections, and PCD development can be inhibited by expression of salicylate hydroxylase encoded by the bacterial nahG gene. The acd11 mutant of Arabidopsis (Arabidopsis thaliana L. Heynh.) activates PCD and defense responses that are fully suppressed by nahG. To further study the role of SA in PCD induction, we compared phenotypes of acd11/nahG with those of acd11/eds5-1 and acd11/sid2-2 mutants deficient in a putative transporter and isochorismate synthase required for SA biosynthesis. We show that sid2-2 fully suppresses SA accumulation and cell death in acd11, although growth inhibition and premature leaf chlorosis still occur. In addition, application of exogenous SA to acd11/sid2-2 is insufficient to restore cell death. This indicates that isochorismate-derived compounds other than SA are required for induction of PCD in acd11 and that some acd11 phenotypes require NahG-degradable compounds not synthesized via isochorismate.  相似文献   

9.
10.
Aphids, which are phloem-feeding insects, cause extensive loss of plant productivity and are vectors of plant viruses. Aphid feeding causes changes in resource allocation in the host, resulting in an increase in flow of nutrients to the insect-infested tissue. We hypothesized that leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf, could be utilized by plants to limit aphid growth. Using Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae Sulzer), we found that GPA feeding induced premature chlorosis and cell death, and increased the expression of SENESCENCE ASSOCIATED GENES (SAGs), all hallmarks of leaf senescence. Hypersenescence was accompanied by enhanced resistance against GPA in the Arabidopsis constitutive expresser of PR genes5 and suppressor of SA insensitivity2 mutant plants. In contrast, resistance against GPA was compromised in the phytoalexin deficient4 (pad4) mutant plant. The PAD4 gene, which is expressed at elevated level in response to GPA feeding, modulates the GPA feeding-induced leaf senescence. In comparison to the wild-type plant, GPA feeding-induced chlorophyll loss, cell death, and SAG expression were delayed in the pad4 mutant. Although PAD4 is associated with camalexin synthesis and salicylic acid (SA) signaling, camalexin and SA signaling are not important for restricting GPA growth; growth of GPA on the camalexin-biosynthesis mutant, pad3, and the SA deficient2 and NahG plants and the SA-signaling mutant, nonexpresser of PR genes1, were comparable to that on the wild-type plant. Our results suggest that PAD4 modulates the activation of senescence in the aphid-infested leaves, which contributes to basal resistance to GPA.  相似文献   

11.
The Arabidopsis PAD4 gene was previously shown to be required for synthesis of camalexin in response to infection by the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 but not in response to challenge by the non-host fungal pathogen Cochliobolus carbonum. In this study, we show that pad4 mutants exhibit defects in defense responses, including camalexin synthesis and pathogenesis-related PR-1 gene expression, when infected by P. s. maculicola ES4 326. No such defects were observed in response to infection by an isogenic avirulent strain carrying the avirulence gene avrRpt2. In P. s. maculicola ES4 326-infected pad4 plants, synthesis of salicylic acid (SA) was found to be reduced and delayed when compared with SA synthesis in wild-type plants. Moreover, treatment of pad4 plants with SA partially reversed the camalexin deficiency and PR-1 gene expression phenotypes of P. s. maculicola ES4 326-infected pad4 plants. These findings support the hypothesis that PAD4 acts upstream from SA accumulation in regulating defense response expression in plants infected with P. s. maculicola ES4 326. A working model of the role of PAD4 in governing expression of defense responses is presented.  相似文献   

12.
A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis   总被引:1,自引:0,他引:1  
Salicylic acid (SA) plays a key role in activating defenses and cell death during plant-pathogen interactions. In response to some pathogens, SA also limits the extent of cell death, indicating that it acts positively or negatively depending on the host-pathogen interaction. In addition, we previously showed that SA affects cell growth in the Arabidopsis defense-related mutants accelerated cell death 6-1 (acd6-1) and aberrant growth and death 2 (agd2). Using acd6-1, agd2 and two other defense-related mutants, lesion simulating disease 6 (lsd6), suppressor of SA-insensitivity (ssi1), we show here in detail that SA regulates cell growth by specifically affecting cell enlargement, endoreduplication and/or cell division. We find that SA can act either positively or negatively to regulate cell growth depending on the context in which signaling occurs. Additionally, Nonexpressor of PR 1 (NPR1), a key SA signaling protein important for regulating defenses and cell death, also acts to promote cell division and/or suppress endoreduplication during leaf development. We propose that SA interacts with multiple receptors or signaling pathways to control cellular alterations during normal development, pathogen attack and/or stress situations. We suggest that SA and NPR1 play broader roles in cell fate control than has previously been understood.  相似文献   

13.
The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.  相似文献   

14.
15.
C6-aldehydes, such as (Z)-3-hexenal, (E)-2-hexenal, and n-hexanal, are volatile compounds formed by hydroperoxide lyase (HPL) and found in most terrestrial plants. They are fungicidal and bactericidal compounds, and are also signaling compounds to induce defense responses in plants. Transgenic plants having overexpressed or suppressed HPL activity (SH or ASH, respectively) showed lower or higher susceptibility against a necrotrophic fungal pathogen, Botrytis cinerea. In this study, we examined whether the modulated susceptibility was accountable to the direct fungicidal activity or to the signaling potency of C6-aldehydes. When wild-type Arabidopsis leaves were inoculated with B. cinerea, HPL expression was upregulated, and concomitantly, the amounts of C6-aldehydes increased. Higher amounts of C6-aldehydes found in inoculated SH plants inhibited growth of B. cinerea in vitro, while lower amounts found in ASH plants caused no inhibitory effect on the fungi. Thus, it was suggested that direct fungicidal activity of C6-aldehydes accounted for the modulated susceptibility. With SH plants higher amounts of camalexin could be found, but with the ASH plants no difference from wild-type plants could be found. Surplus amounts of C6-aldehydes could induce formation of camalexin as signaling compounds; however, this was not the case with wild-type and ASH plants. Accordingly, it could be assumed that direct fungicidal activity of C6-aldehydes were prominently responsible to the defense against B. cinerea but their signaling roles could be little responsible if any.  相似文献   

16.
Salicylic acid (SA), ethylene, and jasmonic acid (JA) are important signaling molecules in plant defense to biotic stress. An intricate signaling network involving SA, ethylene, and JA fine tunes plant defense responses. SA-dependent defense responses in Arabidopsis thaliana are mediated through NPR1-dependent and -independent mechanisms. We have previously shown that activation of an NPR1-independent defense mechanism confers enhanced disease resistance and constitutive expression of the pathogenesis-related (PR) genes in the Arabidopsis ssi1 mutant. In addition, the ssi1 mutant constitutively expresses the defensin gene PDF1.2. Moreover, SA is required for the ssi1-conferred constitutive expression of PDF1.2 in addition to PR genes. Hence, the ssi1 mutant appears to target a step common to SA- and ethylene- or JA-regulated defense pathways. In the present study, we show that, in addition to SA, ethylene and JA signaling also are required for the ssi1-conferred constitutive expression of PDF1.2 and the NPR1-independent expression of PR-1. Furthermore, the ethylene-insensitive ein2 and JA-insensitive jar1 mutants enhance susceptibility of ssi1 plants to the necrotrophic fungus Botrytis cinerea. However, defects in either the ethylene- or JA-signaling pathways do not compromise ssi1-conferred resistance to the bacterial pathogen Pseudomonas synringae pv. maculicola and the oomycete pathogen Peronospora parasitica. Interestingly, ssi1 exhibits a marginal increase in the levels of ethylene and JA, suggesting that low endogenous levels of these phytohormones are sufficient to activate expression of defense genes. Taken together, our results indicate that although cross talk in ssi1 renders expression of ethylene- or JA-responsive defense genes sensitive to SA and vice versa, it does not affect downstream signaling leading to resistance.  相似文献   

17.
Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.  相似文献   

18.
19.
20.
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号