首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
Depending on the threat to a plant, different pattern recognition receptors, such as receptor-like kinases, identify the stress and trigger action by appropriate defense response development.1,2 The plant immunity system primary response to these challenges is rapid accumulation of phytohormones, such as ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) and its derivatives. These phytohormones induce further signal transduction and appropriate defenses against biotic threats.3,4 Phytohormones play crucial roles not only in the initiation of diverse downstream signaling events in plant defense but also in the activation of effective defenses through an essential process called signaling pathway crosstalk, a mechanism involved in transduction signals between two or more distinct, “linear signal transduction pathways simultaneously activated in the same cell.”5  相似文献   

5.
Peptide signaling regulates a variety of developmental processes and environmental responses in plants.16 For example, the peptide systemin induces the systemic defense response in tomato7 and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants.8,9 The CLAVATA3 peptide regulates meristem size10 and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae.11,12 LURE peptides produced by synergid cells attract pollen tubes to the embryo sac.9 RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.Key words: peptide, growth factor, alkalinization  相似文献   

6.
Flowering is a developmental process, which is influenced by chemical and environmental stimuli. Recently, our research established that the Arabidopsis SUMO E3 ligase, AtSIZ1, is a negative regulator of transition to flowering through mechanisms that reduce salicylic acid (SA) accumulation and involve SUMO modification of FLOWERING LOCUS D (FLD). FLD is an autonomous pathway determinant that represses the expression of FLOWERING LOCUS C (FLC), a floral repressor. This addendum postulates mechanisms by which SIZ1-mediated SUMO conjugation regulates SA accumulation and FLD activity.Key words: SIZ1, SA, flowering, SUMO, FLD, FLCSUMO conjugation and deconjugation are post-translational processes implicated in plant defense against pathogens, abscisic acid (ABA) and phosphate (Pi) starvation signaling, development, and drought and temperature stress tolerance, albeit only a few of the modified proteins have been identified.18 The Arabidopsis AtSIZ1 locus encodes a SUMO E3 ligase that regulates floral transition and leaf development.8,9 siz1 plants accumulate substantial levels of SA, which is the primary cause for dwarfism and early short-day flowering exhibited by these plants.1,9 How SA promotes transition to flowering is not yet known but apparently, it is through a mechanism that is independent of the known floral signaling pathways.9,10 Exogenous SA reduces expression of AGAMOUS-like 15 (AGL15), a floral repressor that functions redundantly with AGL18.11,12 A possible mechanism by which SA promotes transition to flowering may be by repressing expression of AGL15 and AGL18 (Fig. 1).Open in a separate windowFigure 1Model of how SUMO conjugation and deconjugation regulate plant development in Arabidopsis. SIZ1 and Avr proteins regulate biosynthesis and accumulation of SA, a plant stress hormone that is involved in plant innate immunity, leaf development and regulation of flowering time. SA promotes transition to flowering may through AGL15/AGL18 dependent and independent pathways. FLC expression is activated by FRIGIDA but repressed by the autonomous pathway gene FLD, and SIZ1-mediated sumoylation of FLD represses its activity. Lines with arrows indicate upregulation (activation), and those with bars identify downregulation (repression).siz1 mutations also cause constitutive induction of pathogenesis-related protein genes leading to enhanced resistance against biotrophic pathogens.1 Several bacterial type III effector proteins, such as YopJ, XopD and AvrXv4, have SUMO isopeptidase activity.1315 PopP2, a member of YopJ/AvrRxv bacterial type III effector protein family, physically interacts with the TIR-NBS-LRR type R protein RRS1, and possibly stabilizes the RRS1 protein.16 Phytopathogen effector and plant R protein interactions lead to increased SA biosynthesis and accumulation, which in turn activates expression of pathogenesis-related proteins that facilitate plant defense.17 SIZ1 may participate in SUMO conjugation of plant R proteins to regulate Avr and R protein interactions leading to SA accumulation, which, in turn, affects phenotypes such as diseases resistance, dwarfism and flowering time (Fig. 1).Our recent work revealed also that AtSIZ1 facilitates FLC expression, negatively regulating flowering.9 AtSIZ1 promotes FLC expression by repressing FLD activity.9 Site-specific mutations that prevent SUMO1/2 conjugation to FLD result in enhanced activity of the protein to represses FLC expression, which is associated with reduced acetylation of histone 4 (H4) in FLC chromatin.9 FLD, an Arabidopsis ortholog of Lysine-Specific Demethylase 1 (LSD1), is a floral activator that downregulates methylation of H3K4 in FLC chromatin and represses FLC expression.18,19 Interestingly, bacteria expressing recombinant FLD protein did not demethylate H3K4me2, inferring that the demethylase activity requires additional co-factors as are necessary for LSD1.18,20 Together, these results suggest that SIZ1-mediated SUMO modification of FLD may affect interactions between FLD and co-factors, which is necessary for FLC chromatin modification.Despite our results that implicate SA in flowering time control, how SIZ1 regulates SA accumulation and the identity of the effectors involved remain to be discovered. In addition, it remains to be determined if SIZ1 is involved in other mechanisms that modulate FLD activity and FLC expression, or the function of other autonomous pathway determinants.  相似文献   

7.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

8.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

9.
Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms.Key words: Cuscuta, induced defenses, parasitic plant, jasmonic acid, salicylic acid, phytohormones, hypersensitive response, trichomes, defense signalingSeveral thousand species of plants are parasitic, stealing water and nutrients from other plants through a specialized feeding structure, the haustorium.1 Haustoria are thought to be modified roots that grow into tissues and fuse with the vascular system of their photosynthetic hosts.1 Considering that these parasites include some of the world''s most devastating agricultural pests2 and are influential, fascinating components of natural communities,1,3 surprisingly little is known about host defenses induced by parasitic plants. To address this shortcoming, we used a metabolomics approach to track biochemical changes induced in tomato shoots by invasion of C. pentagona haustoria.4We found that parasitism induced large increases in both JA and SA beginning about 24 hr after formation of haustoria began, but that production of JA and SA was largely separated in time. Host production of JA was transitory and reached a maximum at 36 hr, whereas SA peaked 12 hr later and remained elevated 5 d later. We also found that C. pentagona grew larger on mutant tomato plants in which the SA (NahG) or JA (jasmonic acid-insensitive1) pathways were disrupted, suggesting that these hormones can act independently to reduce parasite growth. Taken together, these findings suggest the staggered production of JA and SA may be an adaptive response to parasitism—by sequentially activating the JA and SA pathways, tomato plants may minimize the potential for cross-talk between these sometimes antagonistic pathways5,6 and utilize both signaling molecules.6,7 Thus, defenses against C. pentagona contain elements characteristic of responses to both herbivores (primarily JA-mediated8) and pathogens (primarily SA-mediated9)—though it should be noted that some herbivores induce SA10 and some pathogens JA.11 It is worth noting that parasitism induced predominately cis-JA, the same jasmonate isomer induced by herbivore feeding.12 Host responses to Cuscuta seem to most resemble that of known plant responses to some pathogens in which a similar sequence of JA and SA production is required to limit disease.13C. pentagona also triggered a hypersensitive-like response (HLR) localized around the points of parasite attachment. Using a trypan blue staining technique, we verified host cell death in these parasite-induced lesions. The deposition of eggs by some insect herbivores can elicit the formation of necrotic tissue,14 but localized cell death is most widely associated with the hypersensitive response (HR) of plants to pathogens. This complex early defense response can restrict the growth and spread of viruses, fungi and bacteria.9 Our work adds to existing evidence15 that the Cuscuta-induced HLR can play a similar role by preventing or limiting the growth of the parasite.An interesting discovery was that the first attachment by C. pentagona elicited almost no response from young 10-day-old hosts, whereas a subsequent attachment after 10 days induced the wholesale changes discussed above (we also found changes in abscisic acid and free fatty acids). Trials in which we varied the age of the host and parasite indicated that host age, rather than a priming effect on defenses, determined the magnitude of response. We have previously observed that Cuscuta spp. in natural populations germinate very early in the growing season, and hypothesized that this tactic promotes successful parasitism by ensuring the presence of young hosts; recent field work seems to corroborate this.16 As with the response to Cuscuta parasitism, levels of host plant defenses against insects17 and pathogens18 are known to be vary with host age.In an earlier paper we reported that tomato plants parasitized by C. pentagona released greater amounts of volatiles than did unparasitized control plants.19 The production and release of volatiles is a hallmark of plant responses to feeding by herbivores.20 Herbivore-induced volatiles serve as an indirect plant defense by attracting herbivores'' natural enemies,21 repelling herbivores,22 or acting as intra-plant signals that prime systemic responses.23 Although less well documented, pathogen attack can also induce emissions of volatile compounds,24 some of which are antimicrobial and may serve as a direct defense against infection.25 The same volatile compounds induced by Cuscuta (e.g., 2-carene, α-pinene, limonene, β-phellandrene) were also induced by caterpillar feeding and application of JA.19 Like herbivores, the JA induced by C. pentagona may regulate the emissions of plant volatiles. Whether or how parasitic plant-induced volatiles might function in defense is unknown, but they presumably could affect host plant choice by Cuscuta seedlings, which use plant volatiles to locate and select hosts.26Following on from our previous studies we examined the potential role of host trichomes in resistance to parasitism by C. pentagona. Plant trichomes have been long appreciated as the first line of defense against insect herbivores27,28 and more recently pathogens.29 We hypothesized that trichomes could also defend against parasitic plants based on our observations that (1) tomato trichomes become denser with age (Fig. 1), notably on hypocotyls which is the first area contacted by Cuscuta seedlings, and (2) these trichomes can act as a physical barrier to C. pentagona seedlings. To test this hypothesis we allowed seedlings of C. pentagona to attach to 25-day-old tomato plants (Solanum lycopersicum ‘Halley 3155’) in a climate controlled growth chamber. Of 20 trials conducted, in six (30%) the parasite seedling was completely blocked by trichomes and was unable to reach the host stem—the parasite perished in each of these. Type I glandular trichomes, which are several millimeters long with a glandular tip,30 were primarily responsible for the blocking effect. Thus, trichomes can defend against parasitic plants in a manner analogous to herbivores by physically obstructing their movement. Interestingly, the effectiveness of trichomes is also dependent on age of the host since those on younger tomato plants (<20 days old) are too sparse to impede Cuscuta seedlings (Fig. 1).Open in a separate windowFigure 1A newly germinated Cuscuta pentagona seedling encircles and attaches to the hypocotyl of a 10-day-old tomato seedling; the early development of haustoria are visible as nod-like swellings. The trichomes on hypocotyls of young tomato seedlings are not dense enough to affect C. pentagona seedlings, but the increased density of trichomes on 25-day-old plants can act as a physical barrier that blocks parasite seedlings (inset).Considering that the majority of plant defenses are mediated by only a small number of master regulators (e.g., JA, SA, ethylene),7 it is not surprising that plant responses to parasitic plants share commonalities with those induced by herbivores and pathogens. These few molecules mediate complex, interacting signaling networks that can be variously activated and modified by plants to tune defenses against a seemingly endless variety of attackers.7 Our finding that JA and SA act to defend plants from attack by other plants, further support these phytohormones as ‘global’ defense signals. It is also apparent that constitutive defenses, such as trichomes, can be effective against diverse antagonists (e.g., herbivores and parasitic plants). These new insights into host defenses against parasitic plants suggest many avenues of needed research including the molecular events induced by parasitic plant attack, the parasite-derived cues that elicit responses, and the ways in which JA and SA act to reduce parasite growth. Finally, our findings suggest it might be possible to manipulate induced responses or host plant age by varying planting date to control parasitic plants in agriculture.  相似文献   

10.
Cytosolic free Ca2+ mobilization induced by microbe/pathogen-asssociated molecular patterns (MAMPs/PAMPs) plays key roles in plant innate immunity. However, components involved in Ca2+ signaling pathways still remain to be identified and possible involvement of the CBL (calcineurin B-like proteins)-CIPK (CBL-interacting protein kinases) system in biotic defense signaling have yet to be clarified. Recently we identified two CIPKs, OsCIPK14 and OsCIPK15, which are rapidly induced by MAMPs, involved in various MAMP-induced immune responses including defense-related gene expression, phytoalexin biosynthesis and hypersensitive cell death. MAMP-induced production of reactive oxygen species as well as cell browning were also suppressed in OsCIPK14/15-RNAi transgenic cell lines. Possible molecular mechanisms and physiological functions of the CIPKs in plant innate immunity are discussed.Key words: PAMPs/MAMPs, calcium signaling, CBL-CIPK, hypersensitive cell death, reactive oxygen speciesCa2+ plays an essential role as an intracellular second messenger in plants as well as in animals. Several families of Ca2+ sensor proteins have been identified in higher plants, which decode spatiotemporal patterns of intracellular Ca2+ concentration.1,2 Calcineurin B-Like Proteins (CBLs) comprise a family of Ca2+ sensor proteins similar to both the regulatory β-subunit of calcineurin and neuronal Ca2+ sensors of animals.3,4 Unlike calcineurin B that regulates protein phosphatases, CBLs specifically target a family of protein kinases referred to as CIPKs (CBL-Interacting Protein Kinases).5 The CBL-CIPK system has been shown to be involved in a wide range of signaling pathways, including abiotic stress responses such as drought and salt, plant hormone responses and K+ channel regulation.6,7Following the recognition of pathogenic signals, plant cells initiate the activation of a widespread signal transduction network that trigger inducible defense responses, including the production of reactive oxygen species (ROS), biosynthesis of phytoalexins, expression of pathogenesis-related (PR) genes and reorganization of cytoskeletons and the vacuole,8 followed by a form of programmed cell death known as hypersensitive response (HR).9,10 Because complexed spatiotemporal patterns of cytosolic free Ca2+ concentration ([Ca2+]cyt) have been suggested to play pivotal roles in defense signaling,1,9 multiple Ca2+ sensor proteins and their effectors should function in defense signaling pathways. Although possible involvement of some calmodulin isoforms1113 and the calmodulin-domain/calcium-dependent protein kinases (CDPKs)1419 has been suggested, other Ca2+-regulated signaling components still remain to be identified. No CBLs or CIPKs had so far been implicated as signaling components in innate immunity.  相似文献   

11.
12.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

13.
14.
15.
16.
17.
The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive Never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of ROS and a higher NO content in the apical root cells. In wild-type plants NO production seems to be ROS(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant ROS accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10−3 M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.Key words: ethylene receptor mutant, never ripe, nitric oxide, reactive oxygen species, root apex, salicylic acid, tomatoSeveral signal molecules, including salicylic acid (SA) have been implicated in the response of plants to biotic13 and abiotic stressors.46 SA was identified as a central regulator of local defense against (hemi)biotophic pathogens inducing a hypersensitive response (HR), which is characterized by the development of lesions that restrict pathogen spread. It has also emerged as a possible signaling component involved in the activation of certain plant defense responses in non-infected part of the plants establishing the systemic acquired resistance (SAR).7The SA-induced biotic and abiotic stress adaptation most likely involves reactive oxygen species (ROS) and nitric oxide (NO) in primary signaling events that activate multiple signal transduction pathways. SA-induced ROS is required for the activation of antioxidant defense mechanisms4 and if the generation of ROS exceeds the capacity of antioxidant systems, the cells die.8 NO is another important player that is required for the induction of defense mechanisms9 or for ROS-induced cell death.10Accumulation of SA, and two other plant hormones, ethylene (ET) and jasmonic acid (JA) are intimately associated with the initiation or spread of cell death. In HR SA and ROS have been proposed to be on a positive feedback loop that amplifies signals and leads to programmed cell death (PCD). Ethylene caused increased spreading of cell death, while lesion containment can be achieved by JA through decreasing the sensitivity of the cells to ethylene and through the suppression of SA biosynthesis and signaling.8Ethylene evolution is associated with diverse physiological processes such as leaf and flower senescence, abscission of organs and fruit ripening.11 The biosynthesis of ethylene is stimulated by a variety of abiotic and biotic stress factors. Ethylene overproducing mutants (eto1 and eto3) of Arabidopsis were found to be more sensitive to O3, an abiotic stressor which induces ROS-dependent cell death.12 Cadmium-induced cell death was also accompanied by increased production of ethylene and simultaneously by H2O2 accumulation in tomato cell suspension, and based on the effect of specific inhibitors of ethylene biosynthesis and action the authors concluded that the cell death process required H2O2 production and a functional ethylene signaling pathway.13 Ethylene signaling is also required for the susceptible disease response of tomato plants infected with Xanthomonas campestris pv vesicatoria.14 It was found that the accumulation of SA and increased production of ethylene were important components of the disease symptoms of this pathogen in wild-type plants, while in Never ripe (Nr) mutants, which have a non-functional ethylene receptor, the infected plants failed to accumulate SA, produced less ethylene, and the leaves exhibited reduced necrotic lesions.It has been also shown that SA enhances NO synthesis in a dose-dependent manner.15 ROS, such as ·O2 and H2O2 as well as NO can act together in the cell death regulation and propagation.8,16 The compartment-specific (down)regulation of ROS can be controlled by NO, accordingly, ROS and NO homeostasis may be essential for the induction or for the avoidance of cell death.  相似文献   

18.
19.
Salicylic acid (SA) is a plant hormone mainly associated with the induction of defense mechanism in plants, although in the last years there is increasing evidence on the role of SA in plant responses to abiotic stress. We recently reported that an increase in endogenous SA levels are able to counteract the inhibitory effects of several abiotic stress conditions during germination and seedling establishment of Arabidopsis thaliana and that this effect is modulated by gibberellins (GAs) probably through a member of the GASA (Giberellic Acid Stimulated in Arabidopsis) gene family, clearly showing the existence of a cross talk between these two plant hormones in Arabidopsis.Key words: abiotic stress responses, Arabidopsis thaliana, gibberellins, hormone cross-talk, salicylic acidGAs and SA play important roles in many processes of plant growth and development, and despite the recent papers reporting the existence of a complex network of hormone interactions, evidences of a cross talk between these two plant hormones have been very scarce.1,2 These authors indicate that GAs are able to regulate SA biosynthesis during plant responses to pathogens. Interestingly, ABA has recently been proved to negative regulate SA-mediated defenses by downregulating SA biosynthesis.3 These data are consistent with the well known ABA/GAs antagonistic regulation of many aspects of plant development, such as seed dormancy or germination.4,5 Thus, it seems clear that ABA and GAs are able to control plant immune responses by modulating the levels of salicylic acid and/or jasmonic acid.13 In addition to the role of GAs in the regulation of plant responses to biotic stress, we have recently documented a role of GAs in early plant abiotic stress responses in Arabidopsis through modulation of SA levels,6 hormone that been involved in responses to abiotic stress conditions.7 For instance, it has been proved that SA has an important role in heat stress responses8 or in the improved germination of Arabidopsis thaliana seeds under salt stress conditions.9We showed that GAs and the overexpression of a GA-responsive gene were able to increase not only endogenous levels of SA, but also the expression of ics1 and npr1 genes, involved in SA biosynthesis and action, respectively.6 In addition, we have also analyzed expression levels of other genes that have been reported as SA-regulated. For instance, isocitrate lyase, a key enzyme involved in lipid metabolism during seed germination10 and a good marker of seed vigor under stress conditions,11 was found to be induced by SA in germinated seeds of Arabidopsis thaliana.9 Thus, we proved that the expression of isocitrate lyase was upregulated in GASA4 overexpressing lines, and after exogenous application of GA3 (Fig. 1), both situations increasing endogenous SA levels.6 We have documented that SA may have a role in some of the physiological processes associated with GAs, since exogenous application of SA was able to both revert the inhibitory effect of PCB on seed germination and improve germination of the GA-deficient mutant ga1–3.6 Thus, we can hypothesize that the GA-mediated induction of isocitrate lyase gene observed in Arabidopsis thaliana is the result of the increased levels of SA detected either after overexpression of the GA-induced GASA4 gene in Arabidopsis or after exogenous application of gibberellic acid. In other words, GAs are able to induce the expression of isocitrate lyase gene in a SA-dependent manner, producing the establishment of a vigorous seedling.9 These data support the idea that GAs may have an important role in SA biosynthesis and action, and that some of the physiological effects of this hormone may be mediate by SA. In summary, our results clearly show the existence of a cross talk between these two plant hormones during Arabidopsis thaliana seeds germination and early seedling growth under abiotic stress conditions, showing another junction in the complex mechanism of hormone interactions.Open in a separate windowFigure 1(A) Expression of the isocitrate lyase gene in FsGASA-overexpressing plants (G1 to G3) compared to Col-0. (B) Expression of the isocitrate lyase gene in Arabidopsis seedlings treated or not with 100 µM GA3. mRNA levels were determined by northern blot analysis using total RNAs (10 µg/line) isolated from 7 d-old seedlings. Bottom, ethidium bromide stained gels showing rRNAs. Top: quantification of hybridization signals obtained by using a phosphoimage scanner. Data were normalized to the rRNA value. Blots were repeated twice and yielded similar results.  相似文献   

20.
The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.Key words: LRR-RLP, LeEix, Bak1, decoy receptor, endocytosisLeucine-rich-repeat receptor proteins (LRR-RLPs) have been linked with defense response signaling in plants.15 The tomato Cf genes which mediate resistance to Cladosporium fulvum encode LRR-RLPs. Additional LRR-RLPs include the tomato Verticillium (Ve) resistant proteins6,7 and the LeEix proteins.8 The Eix receptors (LeEix1 and LeEix2) contain a signal for receptor-mediated endocytosis, which we have previously shown to be essential for proper induction of defense responses.9,10 Both receptors are able to bind Eix, but only LeEix2 mediates EIX-induced defense.8 In a recent work we demonstrate that LeEix1 attenuates Eix-induced internalization and signaling, and heterodimerizes with LeEix2 upon application of Eix.11 Our work further shows that the brassinosteroid co-receptor Bri-Associated Kinase 1 (BAK1) binds LeEix1 but not LeEix2. In BAK1-silenced plants, LeEix1 was no longer able to attenuate plant responses to Eix, indicating that BAK1 is required for this attenuation and leading to the hypothesis that LeEix1 functions as a decoy receptor for LeEix2.11  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号