首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
Bacillus sp.fmbJ224发酵产新型抗菌肽培养基的优化研究   总被引:6,自引:0,他引:6  
采用Plackett-Burman设计(Plackett-Burman Design,PB)法,对影响Bacillus sp.fmbJ224产新型抗菌肽的17个因素进行了筛选。结果表明:影响该菌发酵产新型抗菌肽的主要培养基成分为葡萄糖、NH4NO3、谷氨酸、CaCl2、MnSO4。在此基础上,再采用响应曲面法(Response Surface Methodology,RSM)对其5个显著因子的最佳水平范围进行研究。通过对二次多项回归方程求解得知,在上述自变量分别为葡萄糖8.13g/L、NH4NO36.14g/L、谷氨酸4.2g/L、CaCl23.98mg/L、MnSO44.87mg/L时,新型抗菌肽的产量从1304.2μg/mL提高到了1487.58μg/mL。  相似文献   

2.
红树林植物促生菌SZ7-1 菌株的培养基优化   总被引:3,自引:0,他引:3  
采用响应面分析法对红树林植物促生菌SZ7-1 菌株发酵培养基进行了优化。首先利用Plackett-Burman (PB)设计对影响SZ7-1 生长的11 个营养因素进行评价, 并筛选出显著影响因子:玉米糖浆、酵母膏和K2HPO4; 其次用最陡爬坡实验逼近以上三因素最优水平; 最后采用响应面法对该3 个显著因素的最佳水平范围进行研究, 得到的最佳浓度为: 玉米浆28 g/L、酵母膏14 g/L和K2HPO4 2.2 g/L。在此条件下, 培养20 h 后SZ7-1 菌数达到2.6×1010 CFU/mL, 与优化前基础培养基、LB 和牛肉膏蛋白胨培养基中生长的菌数相比, 分别提高了12.4、2.4 和5.5 倍。  相似文献   

3.
采用Plackett-Burman设计(Plackett_Burman Design,PB) 法,对影响Bacillussp.fmbJ224产新型抗菌肽的17个因素进行了筛选。结果表明:影响该菌发酵产新型抗菌肽的主要培养基成分为葡萄糖、NH4NO3、谷氨酸、CaCl2、MnSO4。在此基础上,再采用响应曲面法(Response Surface Methodology RSM)对其5个显著因子的最佳水平范围进行研究。通过对二次多项回归方程求解得知,在上述自变量分别为葡萄糖8.13g/L、NH4NO36.14g/L、谷氨酸4.2g/L、CaCl2 3.98mg/L、MnSO44.87mg/L时,新型抗菌肽的产量从1304.21μg/mL提高到了1487.58μg/mL。  相似文献   

4.
产S-酰胺酶培养基统计学筛选与响应面优化   总被引:1,自引:0,他引:1  
利用Design Expert软件中的两水平实验设计和响应面法,对发酵生产S-酰胺酶(可用于拆分2,2-二甲基环丙甲酰胺外消旋体)的培养基进行了优化。采用Plackett-Burman(PB)设计对培养基中相关影响因素的效应进行评价并筛选出了有显著效应的葡萄糖、酵母粉及2,2-二甲基环丙甲酰胺浓度,其他因素对酰胺酶产量的影响不显著。然后用旋转中心组和实验设计及响应面分析确定了主要影响因素的最佳条件,在优化的培养基中,酰胺酶产量达到168 U/L,比优化前的80 U/L提高了110.0%。  相似文献   

5.
本研究将重组大肠杆菌E.coli BL21(DE3)/p ET30α(+)-NADK作为NAD激酶生产菌种,对其产酶发酵培养基及发酵条件进行优化。采用Placket-Burman(PB)设计先筛选出影响重组菌产NAD激酶的三个主要因素:葡萄糖浓度、Mg SO4浓度和诱导表达时间,试验结果表明,增加葡萄糖和Mg SO4的浓度及缩短诱导表达时间对产酶有利。根据中心组合实验设计(Central Composite Design,CCD)原理,利用PB设计确定的这三个显著影响因素,通过最陡爬坡实验逼近最大响应区域,挑选出实验范围内的最优点,以此作为响应面中心组合设计的中心点,用NAD激酶酶活作为响应值,使用Design Expert 8.0软件设计中心组合实验,通过对实验数据进行分析,得出最佳发酵培养基成分及发酵条件为:葡萄糖14.24 g/L、酵母粉8 g/L、胰蛋白胨8 g/L、Mg SO40.94 g/L、Na Cl 5g/L、NH4Cl 2 g/L、KH2PO42 g/L、K2HPO49 g/L,诱导表达时间8.34 h,接种量2%。在此最佳条件下,NAD激酶酶活实验验证值可达10.17 U/mg,与优化前相比提高了2.77倍。对诱导表达结束后的细胞上清液进行SDS-PAGE分析也证明优化取得了显著的效果。  相似文献   

6.
采用响应面分析法(RSM)对R-酰胺酶产生菌Brevibacterium epidermidis ZJB-07021的发酵培养基进行了优化.首先运用了单因子试验筛选出了发酵培养的最佳pH与温度,在此基础上采用Plackett-Burman(PB)设计法,对 8 种影响产酶的因素进行评价,实验结果表明,葡萄糖、酵母粉与乙酰胺含量对菌株产酰胺酶的活力具有显著的影响.通过旋转中心组合实验考察了葡萄糖、酵母粉和乙酰胺这三个主要因素对菌株所产酰胺酶活力的影响.发酵培养基优化结果为葡萄糖 17.00 g/L,酵母粉 15.74 g/L,乙酰胺 7.05 g/L,采用优化后的发酵培养条件进行摇瓶发酵培养,酰胺酶的酶活达到 72.14 U/L,比优化前的初始发酵培养条件下的酶活提高了73.3%.  相似文献   

7.
为了提高类芽胞杆菌新种HB172198产褐藻胶裂解酶活力,本研究采用响应面法对该菌株液体发酵培养基进行了优化实验。在单因素实验和Plackett-Burman试验筛选出海藻酸钠、胰蛋白胨、NaCl、MgSO4·7H2O等4个显著影响产酶因素的基础上,通过Box-Behnken设计及响应面法进行回归分析,得出产褐藻胶裂解酶最佳发酵培养基,其成分为:海藻酸钠7.50 g/L、胰蛋白胨13.57 g/L、NaCl 29.75 g/L、MgSO4·7H2O 0.08 g/L。优化条件下该菌株最大酶活性达14.60 U/mL,是优化前的1.87倍。本研究为菌株HB172198产褐藻胶裂解酶的大规模生产和工业应用提供了重要的理论依据。  相似文献   

8.
Paraherquamide A(PA)作为新型驱虫药Startect的重要原料,其产量制约药物的推广和使用。本研究采用响应面法系统对野生Penicillium sp.KWF31的PA发酵工艺进行优化。通过Plackett-Burman设计对培养基的8个因素进行筛选,得到显著影响效价的3个关键因素分别是酵母提取物、可溶性淀粉和葡萄糖。进而采用爬坡实验逼近这3个关键因素的最大响应区域,通过Box-Behnken设计建立数学模型,获得产PA的最佳条件为可溶性淀粉31.0 g/L、葡萄糖12.8 g/L、酵母提取物14.5 g/L。在此条件下,PA效价高达243.7 mg/L,与预测值241.6 mg/L相近,是优化前的3.4倍。  相似文献   

9.
响应面分析法优化(R)-扁桃酸发酵培养基   总被引:6,自引:0,他引:6  
采用响应面分析法对Bacillussp.HB20菌株合成(R)-扁桃酸的培养基成分进行优化。首先利用Plackett-Burman试验设计筛选出影响(R)-扁桃酸产率的三个主要因素:麦芽糖、蛋白胨和牛肉膏。在此基础上用最陡爬坡路径逼近最大响应区域,再利用Box-Behnken试验设计及响应面分析法进行回归分析。结果表明,麦芽糖、蛋白胨和牛肉膏浓度与(R)-扁桃酸产率存在显著的相关性,通过求解回归方程得到最佳质量浓度:蛋白胨11.507g/L,牛肉膏6.708g/L,麦芽糖10.907g/L,(R)-扁桃酸产率理论最大值达到66.87%。经模型验证,预测值与验证试验平均值接近,在优化条件下(R)-扁桃酸产率提高了25.87%。  相似文献   

10.
厌氧发酵产氢细菌的筛选及其产氢优化   总被引:1,自引:0,他引:1  
本研究以河底泥为来源, 使用产氢培养基进行初筛, 再利用小管产氢试验进行复筛, 得到5株产氢能力较好的菌株。对产氢量最高的菌株FML-C1进行16S rDNA序列分析, 鉴定为阴沟肠杆菌, 确定了其分类地位。培养基优化采用Plackett-Burman试验设计筛选出影响产氢的3个主要因素: 葡萄糖、缓冲液和还原剂。利用最陡爬坡路径逼近最大响应区, 采用中心复合试验设计(CCD)及响应面分析法(RSM)进行回归分析, 建立产氢培养基优化的二次模型。模型求解产氢最佳培养基为葡萄糖21.5 g/L、缓冲液 13.6 mL/L 和还原剂10.0 mL/L, 最大理论产氢量2367.83 mL/L。5批验证试验结果平均值与预测值接近, 表明该模型与实际情况拟合良好, 实际最大产氢量2347.40 mL/L, 较优化前产氢量提高127.42%。  相似文献   

11.
吩嗪-1-羧酸(phenazine-1-carboxylic acid, PCA)是促进根际生长假单胞菌分泌的重要抗菌物质。采用Plackett-Burman(PB)设计和响应面法(response surface method, RSM)对假单胞菌株M18(Pseudomonas sp. M18)的gacA基因突变株M18G的次级代谢产物PCA发酵的营养条件进行建模。运用Plackett-Burman(PB)设计试验,从12个营养成分中筛选出4个关键的组分,进而采用RSM 法对这4个因素进行中心组合设计试验,建立回归方程并进行统计学分析,绘制各营养因子之间的关系图。实验结果表明:建立的模型能合理地模拟并优化发酵中各参数及其浓度,确定发酵培养基的成分和浓度为:黄豆粉33.4g/L,葡萄糖12.7g/L,大豆蛋白胨10.9g/L和乙醇13.8 g/L, M18G菌株经60 h发酵培养,最高PCA产率能达到1.89 g/L,比优化前提高了6倍左右。各营养因子的等值线图表明黄豆粉和乙醇在PCA高产发酵中起到更为关键的作用,因此提供了提高PCA发酵产量的有效方法,并为其未来商业化应用奠定了基础。  相似文献   

12.
13.
响应面法优化多杀菌素发酵培养基的研究   总被引:2,自引:0,他引:2  
采用响应面分析方法,对刺糖多孢茵(Saccharopolyspora spinosa)H-2产多杀菌素的发酵培养基进行优化研究。运用单因子试验筛选出葡萄糖和棉籽粉为最适碳源和氮源,通过Plack—ett—Burman设计试验,对影响发酵培养基的8个相关因子进行评估并筛选出具有显著效应的4个因子:葡萄糖、棉籽粉、黄豆饼粉及玉米浆。通过最陡爬坡实验逼近以上4个因子的最大响应区域后,采用Box-Behnken响应面分析法,确定发酵产多杀菌素最佳培养基为葡萄糖64.5g,麦芽糖20g,玉米浆2g,大豆油40g,棉籽粉25g,黄豆饼粉2.4g,蛋白胨25g,CaCO35g,定容至1L,pH7.0。培养基优化后多杀菌素产量由278.1mg/L提高到508.7mg/L,比初始多杀茵素产量提高了1.83倍。  相似文献   

14.
休哈塔假丝酵母HDYXHT-01利用木糖生产乙醇的发酵工艺优化   总被引:1,自引:1,他引:0  
采用Plackett-Burman (PB) 方法和中心组合设计 (Ccentral composit design,CCD) 对休哈塔假丝酵母Candida shehataeHDYXHT-01利用木糖发酵生产乙醇的工艺进行优化。PB试验设计与分析结果表明:硫酸铵、磷酸二氢钾、酵母粉和接种量是影响木糖乙醇发酵的4个关键因素,以乙醇产量为响应目标,采用CCD和响应面分析法 (Response surface methodology,RSM),确定了木糖乙醇发酵的最佳工艺为:硫酸铵1.73 g/L、磷酸二氢钾3.56 g/L、酵母粉2.62 g/L和接种量5.66%,其他发酵条件为:木糖80 g/L,MgSO4·7H2O 0.1 g/L,pH 5.0,培养温度30 ℃,装液量100 mL/250 mL,摇床转速140 r/min,发酵时间48 h,在该条件下发酵液中乙醇产量可以达到26.18 g/L,比未优化前提高了1.15倍。  相似文献   

15.
高效杀蚊苏云金芽孢杆菌BRC-LLP29的发酵优化   总被引:1,自引:0,他引:1  
苏云金芽孢杆菌BRC-LLP29为新型高效杀蚊菌株,应用快速有效的数学统计方法对其杀蚊毒力的发酵培养进行优化.通过单因素筛选确定最佳碳源为葡萄糖、麦芽糖、可溶性淀粉,氮源为typetone、大豆蛋白胨、干酪素;最佳金属离子为Mg2+、Al3+.采用二水平Placlkett-Burman设计对影响毒力的8因素进行显著性筛选,获得培养基成分中3个重要影响因子:葡萄糖、干酪素和Al2(SO43;运用爬坡路径法对这3种因子进行试验,获得3种重要因子的最适浓度范围;通过响应面分析法得到3个重要因子的交互作用和最佳条件,确定BRC-LLP29菌株最佳毒力水平的发酵培养基为:葡萄糖19.8g/L、干酪素28.4g/L、Al2(SO431.2g/L、MgSO4 2g/L、K2HPO4 3g/L、CaCO3 0.5g/L,优化后毒力水平达到致死率61.11%,与响应面数学模型的预测值只有5.91%的误差.发酵条件优化结果表明:发酵温度为31°,发酵初始pH为7.0,摇瓶装量为40mL/250mL三角瓶,每瓶的接种量为3.5%,发酵72h,对致倦库蚊最终致死率达到最高为83.33%.  相似文献   

16.
对桑木层孔菌(Phellinus mori)液体发酵条件进行了研究,以生物量和胞外多糖为指标,通过L16(45)和L9(34)正交表进行了两次正交试验,筛选出桑木层孔菌最适液体培养条件为:麦芽糖30 g/L,酵母浸粉和蛋白胨15 g/L(质量比2 1),KH2PO4和CaCl25.5 g/L(质量比1 1),初始pH6.0;通过单因素试验筛选出最适装液量为120 mL/250 mL,最适接种量为10%。在此条件下液体发酵培养7 d后,桑木层孔菌生物量达到23.375 g/L,胞外多糖产量达到3.993 g/L。  相似文献   

17.
利用重组大肠杆菌生产α-环糊精葡萄糖基转移酶   总被引:2,自引:0,他引:2  
将来源于软化类芽孢杆菌(Paenibacillus macerans)的α-环糊精葡萄糖基转移酶(α-CGT)基因插入含pelB信号肽的质粒pET-20b(+)中,构建了表达载体pET-20b(+)/cgt,并将其转化表达宿主E.coli BL21(DE3)。对重组菌E.coli BL21/pET-cgt进行摇瓶发酵条件的优化,确定了其胞外表达α-CGT酶的最适条件:葡萄糖8g/L,乳糖0.5g/L,蛋白胨12g/L,酵母膏24g/L,K2HPO472mmol/L,KH2PO417mmol/L,CaCl2 2.5mmol/L;初始pH为7.0,诱导温度为25℃。在该条件下培养90h后最终α-CGT酶的胞外比活达到22.1u/mL,与来源菌Pmacerans所产天然酶比活相比提高了42倍,实现了α-CGT酶的高效生产。将基因工程菌在上述条件下于3L发酵罐中发酵,90h后胞外酶比活达到22.6U/mL,证实了工业化放大的可能性。  相似文献   

18.
以白腐真菌落叶松锈迷孔菌(Porodaedalea laricis)胞外漆酶为响应值,通过将Plackett-Burman设计、最陡爬坡设计和Box-Behnken设计相结合,获得了P.laricis产胞外漆酶的最适培养基为:去皮马铃薯365.61 g/L、蛋白胨5.0 g/L、葡萄糖20.0 g/L、KH2PO41.0 g/L、MgSO47H2O 0.5 g/L、MnSO4 H2O 0.15 g/L、CaCl22H2O 0.03 g/L、酒石酸铵6.68 g/L、琥珀酸钠1.5 g/L、吐温800.48 mL/L、玉米芯46.43 g/L、维生素B10.01 g/L。在该条件下,P.laricis漆酶活性为3.29 U/mL,相比于优化前提高了2.81倍,与理论值3.32 U/mL相近,说明该模型准确可靠。此外,将漆酶应用于降解多种合成染料包括活性亮蓝X-BR、雷马素亮蓝R、酸性黑172、刚果红、亚甲基蓝、中性红、靛蓝、萘酚绿B和结晶紫,反应168 h后脱色率分别可达到95.64%、97.21%、36.11%、91.63%、61.42%、74.65%、48.60%、25.13%和68.80%。  相似文献   

19.
以假单胞菌(Pseudomonas sp.)为出发菌株,通过紫外诱变筛选得到一株γ-谷氨基甲酰胺合成酶高产菌株UV-19,其酶活提高32.54%。以突变株UV-19为供试菌株,对γ-谷氨基甲酰胺合成酶的发酵条件进行优化。首先利用Plackett-Burman设计筛选出影响较大的4个因素:葡萄糖、蛋白胨、起始pH值、装液量。在此基础上再利用CCD响应面分析法进行优化,得到最佳产酶培养条件为(g/L):葡萄糖15、蛋白胨12、NaCl 5.0、MgSO4.7H2O 0.2、K2HPO4.3H2O 0.5、甲胺盐酸盐1.0g/L、起始pH值6.5、装液量72mL/250mL。该优化条件下进行产酶培养,假单胞菌发酵产γ-谷氨基甲酰胺合成酶酶活力可达32.68U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号