首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tibetans are well adapted to high-altitude hypoxia.Previous genome-wide scans have reported many candidate genes for this adaptation,but only a few have been studied.Here we report on a hypoxia gene (GCH1,GTP-cyclohydrolase I),involved in maintaining nitric oxide synthetase (NOS) function and normal blood pressure,that harbors many potentially adaptive variants in Tibetans.We resequenced an 80.8 kb fragment covering the entire gene region of GCH1 in 50 unrelated Tibetans.Combined with previously published data,we demonstrated many GCH1 variants showing deep divergence between highlander Tibetans and lowlander Han Chinese.Neutrality tests confirmed a signal of positive Darwinian selection on GCH1 in Tibetans.Moreover,association analysis indicated that the Tibetan version of GCH1 was significantly associated with multiple physiological traits in Tibetans,including blood nitric oxide concentration,blood oxygen saturation,and hemoglobin concentration.Taken together,we propose that GCH1 plays a role in the genetic adaptation of Tibetans to high altitude hypoxia.  相似文献   

2.
Deedu (DU) Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR), neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1), as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG). Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1) shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.  相似文献   

3.
YB Zhang  X Li  F Zhang  DM Wang  J Yu 《PloS one》2012,7(7):e41768
Genetic features of Tibetans have been broadly investigated, but the properties of copy number variation (CNV) have not been well examined. To get a preliminary view of CNV in Tibetans, we scanned 29 Tibetan genomes with the Illumina Human-1 M high-resolution genotyping microarray and identified 139 putative copy number variable regions (CNVRs), consisting of 70 deletions, 61 duplications, and 8 multi-allelic loci. Thirty-four of the 139 CNVRs showed differential allele frequencies versus other East-Asian populations, with P values <0.0001. These results indicated a distinct pattern of CNVR allele frequency distribution in Tibetans. The Tibetan CNVRs are enriched for genes in the disease class of human reproduction (such as genes from the DAZ, BPY2, CDY, and HLA-DQ and -DR gene clusters) and biological process categories of "response to DNA damage stimulus" and "DNA repair" (such as RAD51, RAD52, and MRE11A). These genes are related to the adaptive traits of high infant birth weight and darker skin tone of Tibetans, and may be attributed to recent local adaptation. Our results provide a different view of genetic diversity in Tibetans and new insights into their high-altitude adaptation.  相似文献   

4.
Genome-wide scans demonstrate that genetic variants associated with high-altitude adaptation in Tibetans and Andeans arose independently as a result of convergent adaptation.  相似文献   

5.
Nitric oxide in adaptation to altitude   总被引:1,自引:0,他引:1  
This review summarizes published information on the levels of nitric oxide gas (NO) in the lungs and NO-derived liquid-phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500 m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24-48 h with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma, and/or red blood cells fell within 2h, but then returned toward baseline or slightly higher by 48 h and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than those of their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma, and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell-associated nitrogen oxides were more than 200 times higher. Other highland populations had generally higher levels although not to the degree shown by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction, although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors' and the Tibetans' high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions, and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function under hypoxic stress.  相似文献   

6.
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude.  相似文献   

7.
Wang B  Zhang YB  Zhang F  Lin H  Wang X  Wan N  Ye Z  Weng H  Zhang L  Li X  Yan J  Wang P  Wu T  Cheng L  Wang J  Wang DM  Ma X  Yu J 《PloS one》2011,6(2):e17002
Since their arrival in the Tibetan Plateau during the Neolithic Age, Tibetans have been well-adapted to extreme environmental conditions and possess genetic variation that reflect their living environment and migratory history. To investigate the origin of Tibetans and the genetic basis of adaptation in a rigorous environment, we genotyped 30 Tibetan individuals with more than one million SNP markers. Our findings suggested that Tibetans, together with the Yi people, were descendants of Tibeto-Burmans who diverged from ancient settlers of East Asia. The valleys of the Hengduan Mountain range may be a major migration route. We also identified a set of positively-selected genes that belong to functional classes of the embryonic, female gonad, and blood vessel developments, as well as response to hypoxia. Most of these genes were highly correlated with population-specific and beneficial phenotypes, such as high infant survival rate and the absence of chronic mountain sickness.  相似文献   

8.
Rate of adaptive peak shifts with partial genetic robustness   总被引:2,自引:0,他引:2  
How adaptive evolution occurs with individually deleterious but jointly beneficial mutations has been one of the major problems in population genetics theory. Adaptation in this case is commonly described as a population's escape from a local peak to a higher peak on Sewall Wright's fitness landscape. Recent molecular genetic and computational studies have suggested that genetic robustness can facilitate such peak shifts. If phenotypic expressions of new mutations are suppressed under genetic robustness, mutations that are otherwise deleterious can accumulate in the population as neutral variants. When the robustness is perturbed by an environmental change or a major mutation, these variants become exposed to natural selection. It is argued that this process promotes adaptation because allelic combinations enriched under genetic robustness can then be positively selected. Here, I propose simple two- and three-locus models of adaptation with partial genetic robustness as suggested by recent studies. The waiting time until the fixation of an adaptive haplotype was observed in stochastic simulations and compared to the expectation without robustness. It is shown that peak shifts can be delayed or accelerated depending on the conditions of genetic robustness. The evolutionary significance of these processes is discussed.  相似文献   

9.
Insights into the relative contributions of locus specific and genome-wide effects on population genetic diversity can be gained through separation of their resulting genetic signals. Here we explore patterns of adaptive and neutral genetic diversity in the disjunct natural populations of Pinus radiata (D. Don) from mainland California. A first-generation common garden of 447 individuals revealed significant differentiation of wood phenotypes among populations (P ST), possibly reflecting local adaptation in response to environment. We subsequently screened all trees for genetic diversity at 149 candidate gene single nucleotide polymorphism (SNP) loci for signatures of adaptation. Ten loci were identified as being possible targets of diversifying selection following F ST outlier tests. Multivariate canonical correlation performed on a data set of 444 individuals identified significant covariance between environment, adaptive phenotypes and outlier SNP diversity, lending support to the case for local adaptation suggested from F ST and P ST tests. Covariation among discrete sets of outlier SNPs and adaptive phenotypes (inferred from multivariate loadings) with environment are supported by existing studies of candidate gene function and genotype–phenotype association. Canonical analyses failed to detect significant correlations between environment and 139 non-outlier SNP loci, which were applied to estimate neutral patterns of genetic differentiation among populations (F ST 4.3 %). Using this data set, significant hierarchical structure was detected, indicating three populations on the mainland. The hierarchical relationships based on neutral SNP markers (and SSR) were in contrast with those inferred from putatively adaptive loci, potentially highlighting the independent action of selection and demography in shaping genetic structure in this species.  相似文献   

10.
Xu S  Li S  Yang Y  Tan J  Lou H  Jin W  Yang L  Pan X  Wang J  Shen Y  Wu B  Wang H  Jin L 《Molecular biology and evolution》2011,28(2):1003-1011
Genetic studies of Tibetans, an ethnic group with a long-lasting presence on the Tibetan Plateau which is known as the highest plateau in the world, may offer a unique opportunity to understand the biological adaptations of human beings to high-altitude environments. We conducted a genome-wide study of 1,000,000 genetic variants in 46 Tibetans (TBN) and 92 Han Chinese (HAN) for identifying the signals of high-altitude adaptations (HAAs) in Tibetan genomes. We discovered the most differentiated variants between TBN and HAN at chromosome 1q42.2 and 2p21. EGLN1 (or HIFPH2, MIM 606425) and EPAS1 (or HIF2A, MIM 603349), both related to hypoxia-inducible factor, were found most differentiated in the two regions, respectively. Strong positive correlations were also observed between the frequency of TBN-dominant haplotypes in the two gene regions and altitude in East Asian populations. Linkage disequilibrium and further haplotype network analyses of world-wide populations suggested the antiquity of the TBN-dominant haplotypes and long-term persistence of the natural selection. Finally, a "dominant haplotype carrier" hypothesis could describe the role of the two genes in HAA. All of our population genomic and statistical analyses indicate that EPAS1 and EGLN1 are most likely responsible for HAA of Tibetans. Interestingly, one each but not both of the two genes were also identified by three recent studies. We reanalyzed the available data and found the escaped top signal (EPAS1) could be recaptured with data quality control and our approaches. Based on this experience, we call for more attention to be paid to controlling data quality and batch effects introduced in public data integration. Our results also suggest limitations of extended haplotype homozygosity-based method due to its compromised power in case the natural selection initiated long time ago and particularly in genomic regions with recombination hotspots.  相似文献   

11.
Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next‐generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced‐representation sequencing, candidate‐gene approaches, linearity of allele–environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies.  相似文献   

12.
席焕久 《人类学学报》2013,32(3):247-255
藏族生活在具有世界屋脊之称的青藏高原, 特殊的生态环境和特殊的文化背景造就了藏族特殊的适应高原缺氧机制, 引起了国内外学者的广泛关注和浓厚的研究兴趣。本文根据国内外数据库的文献并结合我们的研究工作, 从高原适应的角度回顾了30多年藏族人类学研究。回顾显示, 藏族由于长期生活在高原缺氧的环境中, 不仅形态和机能发生了适应性变化, 而且体成分也表现出相应的变化, 体现了形态、机能和体成分的统一。这些变化是长期进化形成的, 与安第斯山人等有明显不同, 就是在同一高原生活的西藏、青海、四川、甘肃和云南的藏族乃至尼泊尔和印度藏族的体质也表现出地域差异, 这些差异的产生是多种因素所致, 两个关键性的基因是导致两大高原人口高原适应机制不同的最主要的原因。  相似文献   

13.
Theory predicts that short-term adaptation within populations depends on additive (A) genetic effects, while gene-gene interactions 'epistasis (E)' are important only in long-term evolution. However, few data exist on the genetic architecture of adaptive variation, and the relative importance of A versus non-additive genetic effects continues to be a central controversy of evolutionary biology after more than 70 years of debate. To examine this issue directly, we conducted hybridization experiments between two populations of wild soapberry bugs that have strongly differentiated in 100 or fewer generations following a host plant shift. Contrary to expectation, we found that between-population E and dominance (D) have appeared quickly in the evolution of new phenotypes. Rather than thousands of generations, adaptive gene differences between populations have evolved in tens. Such complex genetic variation could underlie the seemingly extreme rates of evolution that are increasingly reported in many taxa. In the case of the soapberry bug, extraordinary ecological opportunity, rather than mortality, may have created hard selection for genetic variants. Because ultimate division of populations into genetic species depends on epistatic loss of hybrid compatibility, local adaptation based on E may accelerate macro-evolutionary diversification.  相似文献   

14.
Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Despite remarkable success in uncovering many risk variants and providing novel insights into disease biology, genetic variants identified to date fail to explain the vast majority of the heritability for most complex diseases. One explanation is that there are still a large number of common variants that remain to be discovered, but their effect sizes are generally too small to be detected individually. Accordingly, gene set analysis of GWAS, which examines a group of functionally related genes, has been proposed as a complementary approach to single-marker analysis. Here, we propose a flexible and adaptive test for gene sets (FLAGS), using summary statistics. Extensive simulations showed that this method has an appropriate type I error rate and outperforms existing methods with increased power. As a proof of principle, through real data analyses of Crohn’s disease GWAS data and bipolar disorder GWAS meta-analysis results, we demonstrated the superior performance of FLAGS over several state-of-the-art association tests for gene sets. Our method allows for the more powerful application of gene set analysis to complex diseases, which will have broad use given that GWAS summary results are increasingly publicly available.  相似文献   

15.
Gene flow is a fundamental evolutionary force in adaptation that is especially important to understand as humans are rapidly changing both the natural environment and natural levels of gene flow. Theory proposes a multifaceted role for gene flow in adaptation, but it focuses mainly on the disruptive effect that gene flow has on adaptation when selection is not strong enough to prevent the loss of locally adapted alleles. The role of gene flow in adaptation is now better understood due to the recent development of both genomic models of adaptive evolution and genomic techniques, which both point to the importance of genetic architecture in the origin and maintenance of adaptation with gene flow. In this review, we discuss three main topics on the genomics of adaptation with gene flow. First, we investigate selection on migration and gene flow. Second, we discuss the three potential sources of adaptive variation in relation to the role of gene flow in the origin of adaptation. Third, we explain how local adaptation is maintained despite gene flow: we provide a synthesis of recent genomic models of adaptation, discuss the genomic mechanisms and review empirical studies on the genomics of adaptation with gene flow. Despite predictions on the disruptive effect of gene flow in adaptation, an increasing number of studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow.  相似文献   

16.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

17.
Gu M  Dong X  Shi L  Shi L  Lin K  Huang X  Chu J 《Gene》2012,496(1):37-44
We performed a mitochondrial whole-genome comparison study in 40 Tibetan and 50 Han Chinese. All subjects could be classified into 13 haplogroups pertained to the Macrohaplogroup M and N that pitched different quadrants by principal component analysis. We observed a difference in the M9 haplogroup and identified 18 significant variants by comparing whole sequences between Tibetan and Han populations. Variants in ND2, COX2, tRNA alanine and 12S rRNA were predicted to confer increased protein stability in Tibetans. We compared the base substitutions of nonsynonymous (NS) versus synonymous (S) of 13 protein-encoding genes and found the NS/S values of the ATP6, ATP8, and Cyt b genes were larger (>1) in Tibetans than that in Han population. Our findings provide clues for the existence of adaptive selection for the ATP6, ATP8, Cyt b, ND2, COX2, tRNA alanine and 12S rRNA genes in Tibetans which likely contributed to adaptation to their specific geographic environment, such as high altitude.  相似文献   

18.
Population genetic theory predicts that the availability of appropriate standing genetic variation should facilitate rapid evolution when species are introduced to new environments. However, few tests of rapid evolution have been paired with empirical surveys for the presence of previously identified adaptive genetic variants in natural populations. In this study, we examined local adaptation to soil Al toxicity in the introduced range of sweet vernal grass (Anthoxanthum odoratum), and we genotyped populations for the presence of Al tolerance alleles previously identified at the long‐term ecological Park Grass Experiment (PGE, Harpenden, UK) in the species native range. We found that markers associated with Al tolerance at the PGE were present at appreciable frequency in introduced populations. Despite this, there was no strong evidence of local adaptation to soil Al toxicity among populations. Populations demonstrated significantly different intrinsic root growth rates in the absence of Al. This suggests that selection on correlated root growth traits may constrain the ability of populations to evolve significantly different root growth responses to Al. Our results demonstrate that genotype–phenotype associations may differ substantially between the native and introduced parts of a species range and that adaptive alleles from a native species range may not necessarily promote phenotypic differentiation in the introduced range.  相似文献   

19.
Unravelling the factors shaping the genetic structure of mobile marine species is challenging due to the high potential for gene flow. However, genetic inference can be greatly enhanced by increasing the genomic, geographical or environmental resolution of population genetic studies. Here, we investigated the population structure of turbot (Scophthalmus maximus) by screening 17 random and gene‐linked markers in 999 individuals at 290 geographical locations throughout the northeast Atlantic Ocean. A seascape genetics approach with the inclusion of high‐resolution oceanographical data was used to quantify the association of genetic variation with spatial, temporal and environmental parameters. Neutral loci identified three subgroups: an Atlantic group, a Baltic Sea group and one on the Irish Shelf. The inclusion of loci putatively under selection suggested an additional break in the North Sea, subdividing southern from northern Atlantic individuals. Environmental and spatial seascape variables correlated marginally with neutral genetic variation, but explained significant proportions (respectively, 8.7% and 10.3%) of adaptive genetic variation. Environmental variables associated with outlier allele frequencies included salinity, temperature, bottom shear stress, dissolved oxygen concentration and depth of the pycnocline. Furthermore, levels of explained adaptive genetic variation differed markedly between basins (3% vs. 12% in the North and Baltic Sea, respectively). We suggest that stable environmental selection pressure contributes to relatively strong local adaptation in the Baltic Sea. Our seascape genetic approach using a large number of sampling locations and associated oceanographical data proved useful for the identification of population units as the basis of management decisions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号