首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
线粒体是维持细胞功能稳态的重要的细胞器。在心肌细胞中,线粒体占据了心肌细胞体积的30%,其在协调心脏高能耗及心脏电-机械功能中起着至关重要的作用。线粒体的结构与功能缺陷与病理性心肌肥大及心力衰竭的发生有着密切联系。近年来,线粒体的能量代谢震荡、线粒体膜离子通道异常以及线粒体与其他亚细胞器之间的交流异常在心律失常发生中的作用日益受到关注。现就心律失常发生的线粒体相关机制作一综述。  相似文献   

2.
心血管并发症是糖尿病患者死亡的首要原因。其中,糖尿病心肌病是排除了高血压、冠心病所致的心肌损伤后的一类特异性心肌病,其特征在于心肌细胞的代谢异常和心脏功能的逐渐衰退,临床表现为早期心肌舒张功能受损,晚期心肌收缩功能受损,最终发展为心力衰竭。线粒体是心肌细胞内提供能量的主要细胞器,线粒体动力学是指线粒体进行融合和分裂的动态过程,是线粒体质量控制的重要途径,线粒体动力学在维持线粒体稳态与心脏功能中起着至关重要的作用。调节线粒体分裂的蛋白主要是Drp1及其受体Fis1、MFF、MiD49和MiD51,执行线粒体外膜融合的蛋白为Mfn1/2,内膜融合蛋白为Opa1。本文综述了近期在糖尿病心肌病线粒体动力学方面的系列研究成果:1型与2型糖尿病心肌病的线粒体动力学失衡均表现为分裂增加与融合受阻,前者的分子机制主要是Drp1上调与Opa1下调,后者的分子机制主要为Drp1上调与Mfn1/2下调,线粒体分裂增加和融合受阻可导致线粒体功能障碍,促进糖尿病心肌病的发生、发展。中药单体安石榴苷、丹皮酚和内源性物质褪黑素等活性成分可通过抑制线粒体分裂或促进线粒体融合,改善线粒体功能,减轻糖尿病心肌病症状。本文...  相似文献   

3.
吴昊迪  王世强  孟旭  张海波 《生命科学》2011,(11):1088-1094
心脏的收缩功能依赖心肌细胞膜(包括横管)与肌质网的结构耦联以及其中L型钙通道与肌质网钙释放通道之间的钙致钙释放过程。在一些病理条件下,细胞膜与肌质网的耦联结构发生重塑,钙致钙释放机制受损,心肌细胞收缩力下降。其中,junctophilin-2等蛋白分子表达量减少是心力衰竭疾病中心肌细胞收缩能力下降的关键因素。  相似文献   

4.
心肌重塑是心脏在一些生理的或病理的刺激作用下,心肌细胞和心肌细胞外基质在细胞结构、功能、数量及遗传表型方面出现的明显的变化即心脏的大小、形状和功能的变化。心肌细胞和心肌细胞外基质从根本上参与了心肌重塑的过程。目前,对于影响心肌重塑的因素及作用机制的研究主要集中在血流动力学和神经体液方面。近年来,对于不良心肌重塑的逆转干预,包括药理干预、运动干预,一直持续不断,研究的不断深入给相关疾病的改善、治疗带了新的进展和希望。心肌重塑可能是生理性的或病理性的,生理性的重塑是心肌的适应性代偿性变化,而病理性的重塑是心肌的不适应变化,对身体产生危害性。本文主要对病理性心肌重塑的主要组成部分,影响心肌重塑的因素及相关机制,改善不良心肌重塑的有效干预做一个综述,并提出展望。  相似文献   

5.
恢复心肌血流量是目前针对急性心肌梗塞的有效治疗方式,但是在心肌再灌注过程中会进一步引起心肌细胞的坏死和调亡。二氮嗪是一种线粒体ATP敏感型钾离子通道开放剂,研究证明二氮嗪预处理具有心肌保护功能。本研究主要探讨二氮嗪再灌注处理是否具有心肌细胞保护作用并探讨其分子机制。以体外培养的H9c2心肌细胞为研究对象,通过联合缺氧模拟在体心肌缺血复灌损伤,检测细胞凋亡、线粒体膜电位、细胞内活性氧及钙离子各项指标的变化。结果发现,与正常组(control)相比,缺血再灌损伤组(ischemia-reperfusion injury,IRI)细胞活性显著下降,细胞凋亡率显著升高,线粒体跨膜电位(MMP)下降,同时细胞内活性氧(reactive oxygen species,ROS)和钙离子大量爆发,二氮嗪在这一过程中通过抑制细胞内ROS的增加、保护线粒体膜电位起到心肌细胞保护作用,并且其保护作用与细胞内另一种重要的第二信使钙离子没有直接关系。  相似文献   

6.
心肌再生是逆转心肌损伤和心力衰竭的理想途径,也是心血管医学领域的研究重点。传统观点认为成年哺乳动物心肌细胞无法自我更新和再生,然而最近研究报道心肌细胞能以微弱比例内源再生。通过调节心肌再生过程或调控关键分子表达,可以诱导具有收缩功能的心肌细胞出现,改善损伤心脏的结构和功能。近年心肌再生研究大多侧重细胞增殖,对心肌细胞去分化、增殖及再分化的全过程关注较少。因此,该文从增殖分化视角综述成年哺乳动物心肌再生的诱导方式,旨在探讨实现成年哺乳动物心肌细胞大规模自我更新的可能性。  相似文献   

7.
高血压左心室肥厚(LVH)是指由于高血压导致左室重量增加,病理表现为心室壁的增厚及心肌重量的增加和以心肌细胞肥大、心肌纤维化为主的心肌重构。LVH一方面是心脏的适应性肥厚,是一种代偿机制;另一方面它又是心血管事件一个独立的危险因素。随着高血压LVH进展,冠状动脉储备功能减低,心肌缺血、心力衰竭、心律失常、猝死等事件明显上升。因此,逆转左心室肥厚的治疗能改善高血压病人的预后,并减少心血管疾病的发病率和死亡率。本文就近年来高血压LVH的机制研究进展作一综述。  相似文献   

8.
通过差速离心分离大鼠心肌线粒体,利用蛋白质组学技术构建正常大鼠心肌线粒体蛋白质组表达图谱;选用心肌梗死诱导的心力衰竭大鼠模型,分析比较心力衰竭时心肌线粒体蛋白质表达谱的改变.与正常对照组相比,心力衰竭大鼠心肌线粒体共有188个蛋白点的表达量发生了变化,其中有120个蛋白点表达上调2倍以上,有68个蛋白点表达下调1/2以上(P〈0.05).对差异表达的蛋白点行胶内酶解后质谱鉴定和数据库检索,对蛋白质进行功能注释、亚细胞定位和生物信息学分析,其中有27个蛋白质涉及能量代谢和氧化应激,其中参与糖酵解及三羧酸循环的蛋白质(酶)表达上调,而参与OXPHOS复合体和脂肪酸代谢的蛋白质(酶)表达下调.研究结果表明,心力衰竭时心肌能量代谢模式发生了改变,底物选择从倾向于脂肪酸转为葡萄糖利用增加,糖酵解增强而脂肪酸氧化能力减低;为心肌缺血性损伤时线粒体结构和功能改变提供了分子依据,在蛋白质水平上阐述了线粒体在心力衰竭发展中的可能机制.  相似文献   

9.
心脏疾病中G蛋白的变化   总被引:6,自引:0,他引:6  
Zhang L  Li L  Wu LL 《生理科学进展》2003,34(1):32-36
G蛋白是一类重要的信号转导分子,其生理功能是将细胞膜受体所识别的各种细胞外信号同细胞内一系列效应分子偶联起来,引起核基因转录及蛋白质结构和功能的变化。G蛋白在心脏表达的亚型有Gs、Gi/o、Gq/11、G12/13,参与心肌收缩力、心率、心律和心肌细胞生长的调节。本文着重讨论了心脏G蛋白的分类、结构和功能,以及在心肌肥大、心力衰竭、急性心肌缺血和心律失常等心脏疾病中的改变,以加深对这些疾病的发病机制和病理生理过程的认识。  相似文献   

10.
心肌细胞内线粒体在空间上受肌原纤维的严格限制,线粒体活动受限,线粒体运动、融合/分裂现象未直接观察到。线粒体吻合(kissing)和纳米通道(nanotunneling)是近期发现的两种心肌细胞线粒体间通讯方式。线粒体通过吻合和纳米通道进行缓慢而持续的物质交换,使整个心肌细胞线粒体形成动态的连续网络;心肌细胞钙信号和兴奋收缩活动参与纳米小管的形成,而病理状态下心肌线粒体通讯速率发生改变。本文就心肌细胞线粒体通讯方式和调控以及病理改变方面的研究进展进行了综述。  相似文献   

11.
In heart failure, high‐fat diet (HFD) may exert beneficial effects on cardiac mitochondria and contractility. Skeletal muscle mitochondrial dysfunction in heart failure is associated with myopathy. However, it is not clear if HFD affects skeletal muscle mitochondria in heart failure as well. To induce heart failure, we used pressure overload (PO) in rats fed normal chow or HFD. Interfibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) from gastrocnemius were isolated and functionally characterized. With PO heart failure, maximal respiratory capacity was impaired in IFM but increased in SSM of gastrocnemius. Unexpectedly, HFD affected mitochondria comparably to PO. In combination, PO and HFD showed additive effects on mitochondrial subpopulations which were reflected by isolated complex activities. While PO impaired diastolic as well as systolic cardiac function and increased glucose tolerance, HFD did not affect cardiac function but decreased glucose tolerance. We conclude that HFD and PO heart failure have comparable effects leading to more severe impairment of IFM. Glucose tolerance seems not causally related to skeletal muscle mitochondrial dysfunction. The additive effects of HFD and PO may suggest accelerated skeletal muscle mitochondrial dysfunction when heart failure is accompanied with a diet containing high fat.  相似文献   

12.
13.
Mitochondrial oxidation of fatty acids accounts for the majority of cardiac ATP production in the heart. Fatty acid utilization by cardiac mitochondria is controlled at the level of fatty acid uptake, lipid synthesis, mobilization and mitochondrial import and oxidation. Consequently defective mitochondrial function appears to be central to the development of heart failure. Cardiolipin is a key mitochondrial phospholipid required for the activity of the electron transport chain. In heart failure, loss of cardiolipin and tetralinoleoylcardiolipin helps to fuel the generation of excessive reactive oxygen species that are a by-product of inefficient mitochondrial electron transport chain complexes I and III. In this vicious cycle, reactive oxygen species generate lipid peroxides and may, in turn, cause oxidation of cardiolipin catalyzed by cytochrome c leading to cardiomyocyte apoptosis. Hence, preservation of cardiolipin and mitochondrial function may be keys to the prevention of heart failure development. In this review, we summarize cardiac energy metabolism and the important role that fatty acid uptake and metabolism play in this process and how defects in these result in heart failure. We highlight the key role that cardiolipin and sirtuins play in cardiac mitochondrial β-oxidation. In addition, we review the potential of pharmacological modulation of cardiolipin through the polyphenolic molecule resveratrol as a sirtuin-activator in attenuating mitochondrial dysfunction. Finally, we provide novel experimental evidence that resveratrol treatment increases cardiolipin in isolated H9c2 cardiac myocytes and tetralinoleoylcardiolipin in the heart of the spontaneously hypertensive rat and hypothesize that this leads to improvement in mitochondrial function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

14.
心衰长久以来一直缺少有效治疗方法,给社会造成了巨大的经济和民生负担,新诊断标志物的确认和治疗方法的研发十分迫切。线粒体功能障碍与心衰发生和发展密切相关,以线粒体为基础的能量供应紊乱、钙失衡、氧化应激和细胞死亡在心衰的发展中起着重要作用,但线粒体调控的具体机制还不十分清楚。非编码RNA被证实在表观调控、转录后修饰、翻译调节等多方面发挥重要调控作用。研究表明,包括miRNA、lncRNA、circRNA在内的大量非编码RNA在心脏发育和心脏疾病发展过程中存在差异表达,并在线粒体蛋白稳态、氧化磷酸化、氧化应激、凋亡与自噬等调控中发挥了重要作用,进而影响心衰等心脏疾病的发生发展,但其详细机制尚未完全阐明。本文就近年心衰发生和发展过程中非编码RNA调控线粒体功能机制的相关研究进行综述,梳理了近年来非编码RNA在调节线粒体结构与功能进而影响心衰发展方面的研究进展,以期为心衰研究与治疗提供新的思路和靶点。  相似文献   

15.
Role of cardiolipin alterations in mitochondrial dysfunction and disease   总被引:5,自引:0,他引:5  
Cardiolipin (CL) is a structurally unique dimeric phospholipid localized in the inner mitochondrial membrane where it is required for optimal mitochondrial function. In addition to its role in maintaining membrane potential and architecture, CL is known to provide essential structural and functional support to several proteins involved in mitochondrial bioenergetics. A loss of CL content, alterations in its acyl chain composition, and/or CL peroxidation have been associated with mitochondrial dysfunction in multiple tissues in a variety of pathological conditions, including ischemia, hypothyroidism, aging, and heart failure. Recently, aberrations in CL metabolism have been implicated as a primary causative factor in the cardioskeletal myopathy known as Barth syndrome, underscoring an important role of CL in human health and disease. The purpose of this review is to provide an overview of evidence that has linked changes in the CL profile to mitochondrial dysfunction in various pathological conditions. In addition, a brief overview of CL function and biosynthesis, and a discussion of methods used to examine CL in biological tissues are provided. phospholipid; metabolism; heart failure; aging; hypothyroidism; lipid peroxidation; oxidative stress; diet; ischemia  相似文献   

16.
Heart failure is a consequence of progressive deterioration of cardiac performance. Little is known about the role of impaired oxidative phosphorylation in the progression of the disease, since previous studies of mitochondrial injuries are restricted to end-stage chronic heart failure. The present study aimed at evaluating the involvement of mitochondrial dysfunction in the development of human heart failure. We measured the control of oxidative phosphorylation with high-resolution respirometry in permeabilized myocardial fibres from donor hearts (controls), and patients with no or mild heart failure but presenting with heart disease, or chronic heart failure due to dilated or ischemic cardiomyopathy. The capacity of the phosphorylation system exerted a strong limitation on oxidative phosphorylation in the human heart, estimated at 121 pmol O(2)s(-1)mg(-1) in the healthy left ventricle. In heart disease, a specific defect of the phosphorylation system, Complex I-linked respiration, and mass-specific fatty acid oxidation were identified. These early defects were also significant in chronic heart failure, where the capacities of the oxidative phosphorylation and electron transfer systems per cardiac tissue mass were decreased with all tested substrate combinations, suggesting a decline of mitochondrial density. Oxidative phosphorylation and electron transfer system capacities were higher in ventricles compared to atria, but the impaired mitochondrial quality was identical in the four cardiac chambers of chronic heart failure patients. Coupling was preserved in heart disease and chronic heart failure, in contrast to the mitochondrial dysfunction observed after prolonged cold storage of cardiac tissue. Mitochondrial defects in the phosphorylation system, Complex I respiration and mass-specific fatty acid oxidation occurred early in the development of heart failure. Targeting these mitochondrial injuries with metabolic therapy may offer a promising approach to delay the progression of heart disease.  相似文献   

17.
The high energy demands of the heart are met primarily by the mitochondrial oxidation of fatty acids and glucose. However, in heart failure there is a decrease in cardiac mitochondrial oxidative metabolism and glucose oxidation that can lead to an energy starved heart. Ketone bodies are readily oxidized by the heart, and can provide an additional source of energy for the failing heart. Ketone oxidation is increased in the failing heart, which may be an adaptive response to lessen the severity of heart failure. While ketone have been widely touted as a “thrifty fuel”, increasing ketone oxidation in the heart does not increase cardiac efficiency (cardiac work/oxygen consumed), but rather does provide an additional fuel source for the failing heart. Increasing ketone supply to the heart and increasing mitochondrial ketone oxidation increases mitochondrial tricarboxylic acid cycle activity. In support of this, increasing circulating ketone by iv infusion of ketone bodies acutely improves heart function in heart failure patients. Chronically, treatment with sodium glucose co-transporter 2 inhibitors, which decreases the severity of heart failure, also increases ketone body supply to the heart. While ketogenic diets increase circulating ketone levels, minimal benefit on cardiac function in heart failure has been observed, possibly due to the fact that these dietary regimens also markedly increase circulating fatty acids. Recent studies, however, have suggested that administration of ketone ester cocktails may improve cardiac function in heart failure. Combined, emerging data suggests that increasing cardiac ketone oxidation may be a therapeutic strategy to treat heart failure.  相似文献   

18.
Tgalphaq44 mice with targeted overexpression of activated Galphaq protein in cardiomyocytes mimic many of the phenotypic characteristics of dilated cardiomyopathy in humans. However, it is not known whether the phenotype of Tgalphaq44 mice would also involve dysfunction of cardiac mitochondria. The aim of the present work was to examine changes in EPR signals of semiquinones and iron in Fe-S clusters, as compared to classical biochemical indices of mitochondrial function in hearts from Tgalphaq44 mice in relation to the progression of heart failure. Tgalphaq44 mice at the age of 14 months displayed pulmonary congestion, increased heart/body ratio and impairment of cardiac function as measured in vivo by MRI. However, in hearts from Tgalphaq44 mice already at the age of 10 months EPR signals of semiquinones, as well as cyt c oxidase activity were decreased, suggesting alterations in mitochondrial electron flow. Furthermore, in 14-months old Tgalphaq44 mice loss of iron in Fe-S clusters, impaired citrate synthase activity, and altered mitochondrial ultrastructure were observed, supporting mitochondrial dysfunction in Tgalphaq44 mice. In conclusion, the assessment of semiquinones content and Fe(III) analysis by EPR represents a rational approach to detect dysfunction of cardiac mitochondria. Decreased contents of semiquinones detected by EPR and a parallel decrease in cyt c oxidase activity occurs before hemodynamic decompensation of heart failure in Tgalphaq44 mice suggesting that alterations in function of cardiac mitochondria contribute to the development of the overt heart failure in this model.  相似文献   

19.
Mitochondrial dysfunction and heart disease   总被引:1,自引:0,他引:1  
Rosenberg P 《Mitochondrion》2004,4(5-6):621-628
  相似文献   

20.
The heart relies mainly on mitochondrial metabolism to provide the energy needed for pumping blood to oxygenate the organs of the body. The study of mitochondrial function in the human heart faces many obstacles and elucidation of the role of mitochondria in cardiac diseases has relied mainly on studies with animal models. Cardiac diseases are the leading cause of mortality worldwide. With the emergence of new therapies to treat and prevent heart disease, some aiming at metabolic modulation, a need for acquiring a better understanding of mitochondrial function in the human heart becomes apparent. Our review is aimed at specific evaluation of the human heart in terms of (1) methods to understand mitochondrial function, with particular emphasis on integrated function, (2) data on the role of mitochondrial dysfunction in cardiovascular disease, and (3) possible applications of this knowledge in the treatment of patients with cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号