首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
α-淀粉酶是枯草芽孢杆菌主要胞外酶之一。酶的产量受多种调节基因如amyR,tmrA,pap9及其它基因的控制。通过DNA转化,使这些调节基因的几个基因引入到一个细胞中,由于这些调节基因被引入到同一个细胞中能起到协同作用,所以引起α-淀粉酶高产。  相似文献   

2.
国税厅酿造试验所第4研究室室主任熊谷知荣子、该主任研究员北本滕彦等将曲菌酰胺酶基因导入清酒酵母(协会酵母),稳定地保持着导入基因,试酿获得成功。现在,正进行宫能检查和成分分析,将在东京召开的日本酿造学会大会上发表这项成果。导入的基因是米曲霉的α淀粉酶和葡聚糖酶。先将α淀粉酶基因搭载到拷贝数多的YEp 类型的载体上  相似文献   

3.
用EcoRI部分降解枯草芽孢杜菌8a5染色体DNA,琼脂糖疑胶电泳分离纯化各降解片段,用转化法逐一测定各降解片段的转化活性。实验结果证明,a-淀粉酶基因本身可作为选择性标记用于a-淀粉酶基因的分离。用Hind III降解的λ-DNA 作为分子量对照,确定能高效转化淀粉酶基因的DNA片段大小约4.3kb.本实验获得的a-淀粉酶基因的转化率为1×104转化子/μg DNA.  相似文献   

4.
本研究对金针菇淀粉酶家族基因进行了信息分析,并选用金针菇双核菌株H1123作为实验材料,分析了菌丝生长过程中淀粉酶活性和淀粉酶基因表达特性之间的关系。结果表明,金针菇淀粉酶家族包含6个α淀粉酶和1个γ淀粉酶。7个淀粉酶基因的表达量均在菌丝接种后第10天出现峰值,并与胞外淀粉酶活性呈同步变化,说明基质中淀粉的分解和利用是淀粉酶家族各成员之间相互协调的结果。其中α-Amy-1α-Amy-4α-Amy-5的上调幅度最大,为淀粉降解和代谢过程的主效基因。值得注意的是胞内淀粉酶基因α-Amy-1在第10天时达到约90倍的上调表达水平。我们推测:金针菇胞外淀粉酶将淀粉分解为小分子单糖的同时,其胞内淀粉酶也参与了这些糖类的吸收和运输过程。  相似文献   

5.
枯草杆菌(Bacillus subtilis)2633能超量生产α-淀粉酶(比其亲本品系枯草杆菌6160约高3000倍)。采用枯草杆菌-大肠杆菌穿梭载体 PHY 300 PLK 将枯草杆菌2633的一个α-淀粉酶基因克隆到大肠杆菌中。当含有α-淀粉酶基因的重组质粒 PAM 26被导入枯草杆菌6160后,一个转换体大约可产生40000 U/毫升的α-淀粉酶,为枯草杆菌6160的4000倍。这表明2633的α-淀粉酶基因(淀  相似文献   

6.
马向东  周俊初 《菌物学报》2002,21(2):301-304
本文总结了到目前为止已克隆到的曲霉淀粉酶基因,并阐述了已发现的与调控相关的元件和因子如:顺式作用正调控元件和反式作用正调控因子等,在此基础上提出了曲霉淀粉酶基因的转录调控方式,并简述了曲霉淀粉酶基因的应用前景。 淀粉酶是水解淀粉和糖原酶类的通称,广泛存在于动植物和微生物中(张树政 1984)。由于淀粉酶在工农业上的重要价值,因此很早就有人对淀粉酶进行研究。我国50年代初,先后研究和生产米曲霉的α-淀粉酶用作消化剂和葡萄糖生产,将细菌产生的α-淀粉酶用于纺织品退浆、饴糖制造等(张树政 1984);随着分子生物学技…  相似文献   

7.
从地衣芽孢杆菌(Bacillus licheniformis)中克隆到耐高温α-淀粉酶基因全长,构建了原核表达载体,转入大肠杆菌(Escherichia coli)中,使用IPTG于28℃诱导6小时后,通过SDS-PAGE检测到目的蛋白,分子量约为55 kDa,并通过酶活力检测实验证明该蛋白具有耐高温α-淀粉酶活性。同时构建了该基因融合GFP的植物表达载体,通过农杆菌(Agrobacterium tumefaciens)介导瞬时转化烟草(Nicotiana tabacun)下表皮细胞并在荧光显微镜下观察,发现在烟草下表皮细胞的细胞质和液泡中均有绿色荧光。使用I_2-KI溶液对乙醇脱色后的烟草叶片进行染色,显色反应表明在烟草中表达的耐高温α-淀粉酶具有酶活性。最后,采用农杆菌介导的花蕾浸泡法将重组载体转化到拟南芥(Arabidopsis thaliana)中,筛选到稳定遗传的耐高温α-淀粉酶基因的拟南芥纯合子。研究结果为后期开展表达耐高温α-淀粉酶的转基因植物的相关研究奠定了实验基础。  相似文献   

8.
目的:将带有完整自身信号肽的西方许旺酵母α-淀粉酶基因克隆到大肠杆菌中,验证西方许旺酵母α-淀粉酶基因能否在大肠杆菌中有效表达。方法:利用PCR扩增带有完整自身信号肽的西方许旺酵母α-淀粉酶基因,并将其接入Zeocin启动子片段,构建了重组表达载体GapZA,转化大肠杆菌,验证得到的阳性克隆菌株是否表达α-淀粉酶活性。结果:阳性克隆菌株均有α-淀粉酶活性。结论:证明了许旺酵母α-淀粉酶能在自身信号肽引导下分泌到大肠杆菌细胞外,并且表现出明显酶活。  相似文献   

9.
从废弃的淀粉堆中筛选到一株产低温淀粉酶的蜡样芽孢杆菌(Bacillus cereus)GXBC-1,通过同源保守序列比对,从中克隆到一个淀粉酶基因.该基因全长为1764bp,编码588个氨基酸,分子量约为64kD.将基因克隆到大肠杆菌进行表达及酶学性质研究,该重组酶最适温度为35℃,在20℃仍具有53%的活力;最适pH...  相似文献   

10.
根据已报道的米根霉葡萄糖淀粉酶基因序列,通过PCR方法,从天然少根根霉的总DNA中克隆到含有四个内含子的葡萄糖淀粉酶基因。通过设计引物并采取重叠PCR方法删除内含子,获得了新的少根根霉葡萄糖淀粉酶(Rhizopus arrhizu glucoamylase,RaGA)cDNA序列(Accession number:DQ903853)。该基因在毕赤酵母中成功表达,表达产物具有较高的葡萄糖淀粉酶活性。  相似文献   

11.
生淀粉酶可以在淀粉糊化温度以下的温度下直接降解生淀粉,具有巨大应用价值。丝状真菌生淀粉酶的产生受转录因子的严格调控。但是,草酸青霉(Penicillium oxalicum)中生淀粉酶产生的调控机制仍不清楚。前期工作中,通过比较基因组学获得了草酸青霉HP7-1中调控生淀粉酶产量的候选调控基因集。本研究以草酸青霉ΔPoxKu70为出发菌株,用同源重组技术敲除了其中一个候选调控基因POX03446,获得了缺失突变株ΔPOX03446。在可溶性淀粉培养条件下,与出发菌株ΔPoxKu70相比,转接后第2天,ΔPOX03446的生淀粉酶产量显著下降29.8%~40.3%(p<0.01;Student’s t test);转接后第4天,生淀粉酶产量显著下降14.6%~29.7%(p<0.01;Student’s t test),表明基因POX03446正向调控草酸青霉生淀粉酶的产生。NCBI BlastP比对分析显示POX03446与草酸青霉调控木聚糖酶基因和纤维素酶基因表达的转录因子PoXlnR一致性为46%。这是第一次报道POX03446调控草酸青霉生淀粉酶的产生。  相似文献   

12.
以E.coli噬菌体λ EMBL 3为载体,用鸟枪法将地衣形芽孢杆菌的热稳定α-淀粉酶基因克隆到λ噬菌体的基因组中。携带α-淀粉酶基因的杂种噬菌体λ pAmy_αL16的DNA,经限制性内切酶HindⅢ水解后,被亚克隆到枯草杆菌的质粒pNQ 122上,并得到了表达。通过重转化作用和物理图谱分析,证明α-淀粉酶基因位于3.9 kb的Hin dⅢ DNA限制片段上。 转化子枯草杆菌(pAmy_αL41)产生的α-淀粉酶的热稳定性、最适反应温度等与亲本菌株一致。α-淀粉酶的分子量和等电点也与原菌株相同。  相似文献   

13.
α-淀粉酶是淀粉液化芽孢杆菌(Bacillus amyloliquefaciens)分泌的一种蛋白质,人们想从这种菌获得更大的α-淀粉酶,就把编码这类蛋白质的某个基因的多拷贝连接到芽孢杆菌PUB110质粒上。把这个携带基因多拷贝的质粒插入到某个芽孢杆菌中,主要是插入到枯草芽孢杆菌  相似文献   

14.
从淀粉厂附近的土壤中筛选到一株能够利用淀粉的细菌,对该细菌进行生理生化检测和16S r DNA同源性比对,分析该菌株为蜡状芽孢杆菌(Bacillus cereus)。利用基因克隆技术得到了该菌株的β-淀粉酶基因,该基因含有一个约30个氨基酸的信号肽序列。将该β-淀粉酶基因重组进入质粒p ET-28a中,转化进入E.coli BL21(DE3)中进行表达。检测表达结果显示得到了重组后的β-淀粉酶蛋白质,重组酶的酶活力提高了53.9%。  相似文献   

15.
利用反向-巢式PCR(IN-PCR)从富集土壤宏基因组DNA中克隆到一种α-淀粉酶基因的全序列,其基因登录号为GU045523,测序分析显示与来自Bacillus sp. KR-8104耐酸淀粉酶不完整基因同源性为99%。将获得的α-淀粉酶成熟肽基因与表达载体pSE380连接,导入Escherichia coli JM109中,IPTG诱导表达。粗酶液经Ni-NTA、Sephacryl S-200纯化后测定酶学性质:重组酶GXAA的最适作用pH为7.0,最适作用温度为75℃,对可溶性淀粉的Km值为11.6g/L。构建突变子E27G、A450T、E27G-A450T,其酶学性质与原始酶没有显著差别。  相似文献   

16.
我们将从地衣芽孢杆菌(Bacilluslicheniformis)克隆的约1.68kb的耐高温α-淀粉酶基因构建成表达载体,并转入根癌农杆菌。以马铃薯栽培品种“杂交荷兰7号”块茎圆盘为外植体,按本实验室建立起的再生实验系统[9]及杨美珠等的方法[8]进行转化。采取共培养、芽的诱导、芽的选择再生三步方法获得抗性芽。将抗性芽通过先诱导生根壮苗,再进行卡那霉素筛选,最后再诱导生根的方法得到可能的转基因植株。 对部分可能的转基因植株按改进的王广立等的PCR简单快速鉴定转基因植物的方法[12]进行检测,株号102001、102607、110402均可见到特异性片段的存在。参照张振清[13]及王福荣等[14]的方法对这些植株进行耐高温α—淀粉酶活力测定,这些植株具有相对较强的耐高温α—淀粉酶活性。实验结果表明,耐高温α—淀粉酶基因可能已转入上述植物基因组中,并获表达。  相似文献   

17.
通过PCR方法从Sulfolobus solfataticus P2中扩增到2.6kb的α-淀粉酶基因(SS01172),将其分别克隆到表达载体pET32a(+)和pPICZaA,并在E.coliRosetta和Pichia pastoris GS115中进行表达。结果表明α-淀粉酶基因在Rosetta中得到了高效表达,酶活为143.466U/mL;而在GS115中表达量稍低,发酵液酶活力为98.102U/mL。  相似文献   

18.
小麦抗虫α-淀粉酶抑制因子成熟蛋白编码基因序列分析   总被引:3,自引:0,他引:3  
对17份小麦和山羊草材料的小麦抗虫24kD-α-淀粉酶抑制因子成熟蛋白编码基因进行了分离克隆和序列分析。结果发现,在二倍体材料中α-淀粉酶抑制因子由单个基因编码,而在普通小麦中是以多拷贝的形式存在。从中得到17个24kD-α-淀粉酶抑制因子基因,其中2个来自普通小麦与1个来自粗山羊草的基因编码的抑制因子与WDAI-0-19的氨基酸序列完全相同,为同一蛋白。在普通小麦中得到1个编码蛋白质与WDAI-0-53十分相似的基因。序列分析表明,24kD-α-淀粉酶抑制因子成熟蛋白编码基因在序列大小与核酸组成上都十分相似,一致性达到91.2%。这说明小麦和山羊草中24kD-α-淀粉酶抑制因子基因可能起源于相同原始基因。  相似文献   

19.
以质粒pATl53为载体,应用鸟枪法在大肠杆菌中建立了嗜热脂肪芽孢杆菌α-淀粉酶基因无性繁殖系。两个含α一淀粉酶基因的克隆的Hind Ⅲ片段均为4.5kb,内切酶谱也相同。本文还比较了从HBl01,pa-1823和从基因供体菌中提取的α-淀粉酶的耐热性。  相似文献   

20.
地衣芽孢杆菌是具有广泛应用的重要工业微生物,迄今为止这一菌株的基因编辑工具仍十分有限。CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9系统已在许多物种中成功应用于基因编辑,然而地衣芽孢杆菌极低的转化和重组效率为CRISPR/Cas9系统在这一宿主中的应用带来障碍。本研究构建了诱导型表达Cas9蛋白的重组质粒,成功实现了CRISPR/Cas9系统介导的地衣芽孢杆菌淀粉酶编码基因amy L的敲除。结果显示,所设计的3个sg RNA均能实现目的基因的有效编辑,基因敲除的成功率分别为58%、39%和37%。淀粉酶基因敲除的重组大肠杆菌生长无显著影响,淀粉酶活力为原始菌的0.86%。以上成果为研究地衣芽孢杆菌的基因功能及通过菌种改造提升这一工业微生物的发酵性能提供了新型、有效的基因编辑工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号