首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superinfection exclusion is the ability of an established virus infection to interfere with infection by a second virus. In this study, we found that Huh-7.5 cells acutely infected with hepatitis C virus (HCV) genotype 2a (chimeric strain J6/JFH) and cells harboring HCV genotype 1a, 1b, or 2a full-length or subgenomic replicons were resistant to infection with cell culture-produced HCV (HCVcc). Replicon-containing cells became permissive for HCVcc infection after treatment with an HCV-specific protease inhibitor. With the exception of cells harboring a J6/JFH-FLneo replicon, infected or replicon-containing cells were permissive for HCV pseudoparticle (HCVpp) entry, demonstrating a postentry superinfection block downstream of primary translation. The surprising resistance of J6/JFH-FLneo replicon-containing cells to HCVpp infection suggested a defect in virus entry. This block was due to reduced expression of the HCV coreceptor CD81. Further analyses indicated that J6/JFH may be toxic for cells expressing high levels of CD81, thus selecting for a CD81(low) population. CD81 down regulation was not observed in acutely infected cells, suggesting that this may not be a general mechanism of HCV superinfection exclusion. Thus, HCV establishes superinfection exclusion at a postentry step, and this effect is reversible by treatment of infected cells with antiviral compounds.  相似文献   

2.
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. Interferon alone or together with ribavirin is the only therapy for HCV infection; however, a significant number of HCV-infected individuals do not respond to this treatment. Therefore, the development of new therapeutic options against HCV is a matter of urgency. In the present study, we have examined vectors carrying short hairpin RNA (shRNA) targeting the 5' nontranslated conserved region of the HCV genome for inhibition of virus replication. Initially, three sequences were selected, and all three shRNAs (psh-53, psh-274, and psh-375) suppressed HCV internal ribosome entry site (IRES)-mediated translation to different degrees in Huh-7 cells. Next, we introduced siRNA into Huh-7.5 cells persistently infected with HCV genotype 2a (JFH1). The most efficient inhibition of JFH1 replication was observed with psh-274, targeted to the portion from subdomain IIId to IIIe of the IRES. Subsequently, Huh-7.5 cells stably expressing psh-274 further displayed a significant reduction in HCV JFH1 replication. The effect of psh-274 on cell-culture-grown HCV genotype 1a (H77) was also evaluated, and inhibition of virus replication and infectivity titers was observed. In the absence of a cell-culture-grown HCV genotype 1b, the effects of psh-274 on subgenomic and full-length replicons were examined, and efficient inhibition of genome replication was observed. Therefore, we have identified a conserved sequence targeted to the HCV genome that can inhibit replication of different genotypes, suggesting the potential of siRNA as an additional therapeutic modality against HCV infection.  相似文献   

3.
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.  相似文献   

4.

Background

Hepatitis C virus (HCV) infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of action of this recombinant antibody and to determine whether or not this antibody inhibits replication and infectivity of a highly efficient JFH1 HCV 2a virus clone.

Results

The antiviral effect of intracellular expressed antibody against the HCV 2a virus strain was examined using a full-length green fluorescence protein (GFP) labeled infectious cell culture system. For this purpose, a Huh-7.5 cell line stably expressing the NS3 helicase gene specific IgG1 antibody was prepared. Replication of full-length HCV-GFP chimera RNA and negative-strand RNA was strongly inhibited in Huh-7.5 cells stably expressing NS3 antibody but not in the cells expressing an unrelated control antibody. Huh-7.5 cells stably expressing NS3 helicase antibody effectively suppressed infectious virus production after natural infection and the level of HCV in the cell free supernatant remained undetectable after first passage. In contrast, Huh-7.5 cells stably expressing an control antibody against influenza virus had no effect on virus production and high-levels of infectious HCV were detected in culture supernatants over four rounds of infectivity assay. A recombinant adenovirus based expression system was used to demonstrate that Huh-7.5 replicon cell line expressing the intracellular antibody strongly inhibited the replication of HCV-GFP RNA.

Conclusion

Recombinant human anti-HCV NS3 antibody clone inhibits replication of HCV 2a virus and infectious virus production. Intracellular expression of this recombinant antibody offers a potential antiviral strategy to inhibit intracellular HCV replication and production.  相似文献   

5.
Persistent infection with hepatitis C virus (HCV) is closely correlated with type 2 diabetes. In this study, replication of HCV at different glucose concentrations was investigated by using J6/JFH1-derived cell-adapted HCV in Huh-7.5 cells and the mechanism of regulation of HCV replication by AMP-activated protein kinase (AMPK) as an energy sensor of the cell analyzed. Reducing the glucose concentration in the cell culture medium from 4.5 to 1.0 g/L resulted in suppression of HCV replication, along with activation of AMPK. Whereas treatment of cells with AMPK activator 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) suppressed HCV replication, compound C, a specific AMPK inhibitor, prevented AICAR's effect, suggesting that AICAR suppresses the replication of HCV by activating AMPK in Huh-7.5 cells. In contrast, compound C induced further suppression of HCV replication when the cells were cultured in low glucose concentrations or with metformin. These results suggest that low glucose concentrations and metformin have anti-HCV effects independently of AMPK activation.  相似文献   

6.
The lack of a culture system that efficiently produces progeny virus has hampered hepatitis C virus (HCV) research. Recently, the discovery of a novel HCV isolate JFH1 and its chimeric derivative J6/JFH1 has led to the development of an efficient virus productive culture system. To construct an easy monitoring system for the viral life cycle of HCV, we generated bicistronic luciferase reporter virus genomes based on the JFH1 and J6/JFH1 isolates, respectively. Transfection of the J6/JFH1-based reporter genome to Huh7.5 cells produced significantly greater levels of progeny virus than transfection of the JFH1 genome. Furthermore, the expression of dominant-negative Vps4, a key molecule of the endosomal sorting complex required for transport machinery, inhibited the virus production of JFH1, but not that of J6/JFH1. These results may account for the different abilities to produce progeny virus between JFH1 and J6/JFH1. Using the J6/JFH1/Luc system, we showed that the two polyanions heparin and polyvinyl sulfate decreased the infectivity of J6/JFH1/Luc virus in a dose-dependent manner. We also analyzed the function of microRNA on HCV replication and found that miR-34b could affect the replication of HCV. The reporter virus generated in this study will be useful for investigating the nature of the HCV life cycle and for identification of HCV inhibitors.  相似文献   

7.
The human scavenger class B type 1 receptor (SR-B1/Cla1) was identified as a putative receptor for hepatitis C virus (HCV) because it binds to soluble recombinant HCV envelope glycoprotein E2 (sE2). High-density lipoprotein (HDL), a natural SR-B1 ligand, was shown to increase the in vitro infectivity of retroviral pseudoparticles bearing HCV envelope glycoproteins and of cell culture-derived HCV (HCVcc), suggesting that SR-B1 promotes viral entry in an HDL-dependent manner. To determine whether SR-B1 participates directly in HCV infection or facilitates HCV entry through lipoprotein uptake, we generated a panel of monoclonal antibodies (MAbs) against native human SR-B1. Two of them, 3D5 and C167, bound to conformation-dependent SR-B1 determinants and inhibited the interaction of sE2 with SR-B1. These antibodies efficiently blocked HCVcc infection of Huh-7.5 hepatoma cells in a dose-dependent manner. To examine the role of HDL in SR-B1-mediated HCVcc infection, we set up conditions for HCVcc production and infection in serum-free medium. HCVcc efficiently infected Huh-7.5 cells in the absence of serum lipoproteins, and addition of HDL led to a twofold increase in infectivity. However, the HDL-induced enhancement of infection had no impact on the neutralization potency of MAb C167, despite its ability to inhibit both HDL binding to cells and SR-B1-mediated lipid transfer. Of note, MAb C167 also potently blocked Huh-7.5 infection by an HCV strain recovered from HCVcc-infected chimpanzees. These results demonstrate that SR-B1 is essential for infection with HCV produced in vitro and in vivo and suggest the possible use of anti-SR-B1 antibodies as therapeutic agents.  相似文献   

8.
Recently a cell culture model supporting the complete life cycle of the hepatitis C virus (HCV) was developed. Searching for host cell determinants involved in the HCV replication cycle, we evaluated the efficiency of virus propagation in different Huh-7-derived cell clones. We found that Huh-7.5 cells and Huh7-Lunet cells, two former replicon cell clones that had been generated by removal of an HCV replicon by inhibitor treatment, supported comparable levels of RNA replication and particle production, whereas virus spread was severely impaired in the latter cells. Analysis of cell surface expression of CD81 and scavenger receptor class B type I (SR-BI), two molecules previously implicated in HCV entry, revealed similar expression levels for SR-BI, while CD81 surface expression was much higher on Huh-7.5 cells than on Huh7-Lunet cells. Ectopic expression of CD81 in Huh7-Lunet cells conferred permissiveness for HCV infection to a level comparable to that for Huh-7.5 cells. Modulation of CD81 cell surface density in Huh-7.5 cells by RNA interference indicated that a certain amount of this molecule (approximately 7 x 10(4) molecules per cell) is required for productive infection with a low dose of HCV. Consistent with this, we show that susceptibility to HCV infection depends on a critical quantity of CD81 molecules. While infection is restricted in cells expressing very small amounts of CD81, susceptibility rapidly rises within a narrow range of CD81 levels, reaching a plateau where higher expression does not further increase the efficiency of infection. Together these data indicate that a high density of cell surface-exposed CD81 is a key determinant for productive HCV entry into host cells.  相似文献   

9.
探索了F蛋白缺失及核心蛋白(Core)二级结构改变对丙型肝炎病毒(HCV)复制和感染性的影响.利用定点突变方法,将J6JFH1的核心基因引进5个终止密码子以中断F蛋白的表达,从而获得F蛋白缺失的病毒复制子J6JFH1/ΔF.体外制备RNA转录体,并电穿孔转染Huh7.5.1细胞,采用免疫荧光、实时荧光定量PCR方法以及病毒感染等方法,观察F蛋白缺失对病毒复制、蛋白质表达及转染细胞上清感染性病毒颗粒产生的影响.在此基础上,构建5个单一突变病毒体,对HCV核心蛋白进行二级结构分析,观察核心蛋白二级结构对HCV复制和翻译的影响.结果显示,转染48 h后,J6JFH1/ΔF与野生型J6JFH1相比,J6JFH1/ΔF转染阳性细胞数明显降低,细胞内HCV RNA 水平降低约95%,J6JFH1/ΔF转染后不同时间点细胞上清中HCV RNA拷贝数和病毒颗粒也明显降低.5个单一突变体不影响核心基因二级结构,病毒在细胞内复制和感染性与野生型水平一致.J6JFH1/ΔF所产生的改变可能是由于5处突变导致核心基因二级结构改变而造成的.结果说明,HCV F蛋白缺失不影响病毒的复制翻译及病毒颗粒的包装释放,核心蛋白二级结构的改变对病毒复制和翻译则产生较大影响.  相似文献   

10.
Hepatitis C virus-positive serum (HCVser, genotypes 1a to 3a) or HCV cell culture (JFH1/HCVcc) infection of primary normal human hepatocytes was assessed by measuring intracellular HCV RNA strands. Anti-CD81 antibodies and siRNA-CD81 silencing markedly inhibited (>90%) HCVser infection irrespective of HCV genotype, viral load, or liver donor, while hCD81-large intracellular loop (LEL) had no effect. However, JFH1/HCVcc infection of hepatocytes was modestly inhibited (40 to 60%) by both hCD81-LEL and anti-CD81 antibodies. In conclusion, CD81 is involved in HCVser infection of human hepatocytes, and comparative studies of HCVser versus JFH1/HCVcc infection of human hepatocytes and Huh-7.5 cells revealed that the cell-virion combination is determinant of the entry process.  相似文献   

11.
12.
Roe B  Kensicki E  Mohney R  Hall WW 《PloS one》2011,6(8):e23641
Hepatitis C virus (HCV) is capable of disrupting different facets of lipid metabolism and lipids have been shown to play a crucial role in the viral life cycle. The aim of this study was to examine the effect HCV infection has on the hepatocyte metabolome. Huh-7.5 cells were infected using virus produced by the HCV J6/JFH1 cell culture system and cells were harvested 24, 48, and 72-hours following infection. Metabolic profiling was performed using a non-targeted multiple platform methodology combining ultrahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS(2)) and gas chromatography/mass spectrometry (GC/MS). There was a significant increase in a number of metabolites involved in nucleotide synthesis and RNA replication during early HCV infection. NAD levels were also significantly increased along with several amino acids. A number of lipid metabolic pathways were disrupted by HCV infection, resulting in an increase in cholesterol and sphingolipid levels, altered phospholipid metabolism and a possible disruption in mitochondrial fatty acid transport. Fluctuations in 5'-methylthioadenosine levels were also noted, along with alterations in the glutathione synthesis pathway. These results highlight a number of previously unreported metabolic interactions and give a more in depth insight into the effect HCV has on host cell biochemical processes.  相似文献   

13.
Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process.  相似文献   

14.
Class B scavenger receptors (SR-Bs) bind lipoproteins and play an important role in lipid metabolism. Most recently, SR-B type I (SR-BI) and its splicing variant SR-BII have been found to mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells. In this study, we demonstrate that SR-BI is a key host factor required for hepatitis C virus (HCV) uptake and cross-presentation by human dendritic cells (DCs). Whereas monocytes and T and B cells were characterized by very low or undetectable SR-BI expression levels, human DCs demonstrated a high level of cell surface expression of SR-BI similar to that of primary human hepatocytes. Antibodies targeting the extracellular loop of SR-BI efficiently inhibited HCV-like particle binding, uptake, and cross-presentation by human DCs. Moreover, human high-density lipoprotein specifically modulated HCV-like particle binding to DCs, indicating an interplay of HCV with the lipid transfer function of SR-BI in DCs. Finally, we demonstrate that anti-SR-BI antibodies inhibit the uptake of cell culture-derived HCV (HCVcc) in DCs. In conclusion, these findings identify a novel function of SR-BI for viral antigen uptake and recognition and may have an important impact on the design of HCV vaccines and immunotherapeutic approaches aiming at the induction of efficient antiviral immune responses.  相似文献   

15.
Hepatitis C virus (HCV) core protein is a major component of viral nucleocapsid and a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis. We previously showed that the HCV core protein is degraded through the ubiquitin-proteasome pathway. However, the molecular machinery for core ubiquitylation is unknown. Using tandem affinity purification, we identified the ubiquitin ligase E6AP as an HCV core-binding protein. E6AP was found to bind to the core protein in vitro and in vivo and promote its degradation in hepatic and nonhepatic cells. Knockdown of endogenous E6AP by RNA interference increased the HCV core protein level. In vitro and in vivo ubiquitylation assays showed that E6AP promotes ubiquitylation of the core protein. Exogenous expression of E6AP decreased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected Huh-7 cells. Furthermore, knockdown of endogenous E6AP by RNA interference increased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected cells. Taken together, our results provide evidence that E6AP mediates ubiquitylation and degradation of HCV core protein. We propose that the E6AP-mediated ubiquitin-proteasome pathway may affect the production of HCV particles through controlling the amounts of viral nucleocapsid protein.  相似文献   

16.
The host–virus interactions leading to cell infection with hepatitis C virus (HCV) are not fully understood. The tetraspanin CD-81 and human scavenger receptor SR-BI/Cla1 are major receptors mediating virus cell entry. However, HCV in patients' sera is associated with lipoproteins and infectious potential of the virus depends on lipoproteins associated to virus particles. We show here that lipoprotein lipase (LPL), targeting triglyceride-rich lipoproteins (TRL) to the liver, mediates binding and internalization of HCV to different types of cells, acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate proteoglycans (HSPG). The dimeric structure and catalytic activity of LPL are required for LPL-mediated HCV uptake to cells. Unexpectedly, exogenous LPL significantly inhibits HCVcc infection in vitro . This effect is prevented by anti-LPL antibodies and by tetrahydrolipstatin (THL) a specific inhibitor of LPL enzymatic activity. In addition, we show that antibodies directed to apolipoprotein B (ApoB)-containing lipoproteins efficiently inhibits HCVcc infection. Our findings suggest that LPL mediates HCV cell entry by a mechanism similar to hepatic clearance of TRL from the circulation, promoting a non-productive virus uptake. These data provide new insight into mechanisms of HCV cell entry and suggest that LPL could modulate HCV infectivity in vivo .  相似文献   

17.
Jiang J  Cun W  Wu X  Shi Q  Tang H  Luo G 《Journal of virology》2012,86(13):7256-7267
Viruses are known to use virally encoded envelope proteins for cell attachment, which is the very first step of virus infection. In the present study, we have obtained substantial evidence demonstrating that hepatitis C virus (HCV) uses the cellular protein apolipoprotein E (apoE) for its attachment to cells. An apoE-specific monoclonal antibody was able to efficiently block HCV attachment to the hepatoma cell line Huh-7.5 as well as primary human hepatocytes. After HCV bound to cells, however, anti-apoE antibody was unable to inhibit virus infection. Conversely, the HCV E2-specific monoclonal antibody CBH5 did not affect HCV attachment but potently inhibited HCV entry. Similarly, small interfering RNA-mediated knockdown of the key HCV receptor/coreceptor molecules CD81, claudin-1, low-density lipoprotein receptor (LDLr), occludin, and SR-BI did not affect HCV attachment but efficiently suppressed HCV infection, suggesting their important roles in HCV infection at postattachment steps. Strikingly, removal of heparan sulfate from the cell surface by treatment with heparinase blocked HCV attachment. Likewise, substitutions of the positively charged amino acids with neutral or negatively charged residues in the receptor-binding region of apoE resulted in a reduction of apoE-mediating HCV infection. More importantly, mutations of the arginine and lysine to alanine or glutamic acid in the receptor-binding region ablated the heparin-binding activity of apoE, as determined by an in vitro heparin pulldown assay. HCV attachment could also be inhibited by a synthetic peptide derived from the apoE receptor-binding region. Collectively, these findings demonstrate that apoE mediates HCV attachment through specific interactions with cell surface heparan sulfate.  相似文献   

18.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr330 (Tyr2306 in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr330.  相似文献   

19.
The lack of a suitable small animal model for the analysis of hepatitis C virus (HCV) infection has hampered elucidation of the HCV life cycle and the development of both protective and therapeutic strategies against HCV infection. Human and mouse harbor a comparable system for antiviral type I interferon (IFN) induction and amplification, which regulates viral infection and replication. Using hepatocytes from knockout (ko) mice, we determined the critical step of the IFN-inducing/amplification pathways regulating HCV replication in mouse. The results infer that interferon-beta promoter stimulator (IPS-1) or interferon A receptor (IFNAR) were a crucial barrier to HCV replication in mouse hepatocytes. Although both IFNARko and IPS-1ko hepatocytes showed a reduced induction of type I interferons in response to viral infection, only IPS-1-/- cells circumvented cell death from HCV cytopathic effect and significantly improved J6JFH1 replication, suggesting IPS-1 to be a key player regulating HCV replication in mouse hepatocytes. We then established mouse hepatocyte lines lacking IPS-1 or IFNAR through immortalization with SV40T antigen. Expression of human (h)CD81 on these hepatocyte lines rendered both lines HCVcc-permissive. We also found that the chimeric J6JFH1 construct, having the structure region from J6 isolate enhanced HCV replication in mouse hepatocytes rather than the full length original JFH1 construct, a new finding that suggests the possible role of the HCV structural region in HCV replication. This is the first report on the entry and replication of HCV infectious particles in mouse hepatocytes. These mouse hepatocyte lines will facilitate establishing a mouse HCV infection model with multifarious applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号