首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   4篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   8篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
1.
2.
3.
The hypothesis that male diabetes mutant mice (C57Bl/KsJ-db/db) are suffering from impairment of testicular steroidogenic function and pituitary LH release was tested. A smaller postpubertal increase of testicular weight and a reduction of plasma testosterone and androstenedione levels by 65% at 17 weeks of age were most obvious from the comparison to homozygous lean controls. The ability of constant amounts of Leydig cells, either in crude interstitial cell or in purified Leydig cell suspensions, to respond to maximal doses of hCG or cyclic AMP-was reduced by at least 40% in adult diabetes mice. This defect could be attributed to a 40% decrease of steroid-17 alpha-monooxygenase activity as compared to lean mice. No differences occurred, however, if Leydig cells were submaximally stimulated. GnRH-stimulated pituitary LH release was not significantly changed. The impairment of testicular steroidogenic function in diabetes mutant mice may represent a further aspect of infertility of these animals and of diabetes mellitus.  相似文献   
4.
Dietary-induced hypertrophic--hyperplastic obesity in mice   总被引:1,自引:0,他引:1  
Metabolically intact NMRI mice and genetically obese NZO mice were fed ad lib. either a high-carbohydrate diet (standard) or a high-fat diet for a period of about 11 (NMRI mice) or 38 (NZO mice) wk. In both strains of mice, body weight increased more in the groups fed the high-fat diet. However, caloric intake by NMRI mice fed the high-fat diet was less than that of the controls. In NMRI mice fed the high-fat diet, epididymal and subcutaneous fat cell volumes increased; when these mice were fed the standard diet, only epididymal fat cell volume increased. Epididymal and subcutaneous fat cell numbers increased only in the group fed the high-fat diet. In NMRI mice fed either diet, the postprandial blood glucose was lower in older animals, but plasma insulin remained unchanged. The glucose tolerance deteriorated insignificantly. In NZO mice fed either diet, epididymal fat cell volumes and fat cell numbers increased. In this strain of mice the postprandial blood glucose and plasma insulin exhibited the strain-specific pattern, independent of the diet. In older animals fed either diet the glucose tolerance decreased.  相似文献   
5.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   
6.
cAMP-dependent protein kinases are reversibly complexed with any of the four isoforms of regulatory (R) subunits, which contain either a substrate or a pseudosubstrate autoinhibitory domain. The human protein kinase X (PrKX) is an exemption as it is inhibited only by pseudosubstrate inhibitors, i.e. RIα or RIβ but not by substrate inhibitors RIIα or RIIβ. Detailed examination of the capacity of five PrKX-like kinases ranging from human to protozoa (Trypanosoma brucei) to form holoenzymes with human R subunits in living cells shows that this preference for pseudosubstrate inhibitors is evolutionarily conserved. To elucidate the molecular basis of this inhibitory pattern, we applied bioluminescence resonance energy transfer and surface plasmon resonance in combination with site-directed mutagenesis. We observed that the conserved αH-αI loop residue Arg-283 in PrKX is crucial for its RI over RII preference, as a R283L mutant was able to form a holoenzyme complex with wild type RII subunits. Changing the corresponding αH-αI loop residue in PKA Cα (L277R), significantly destabilized holoenzyme complexes in vitro, as cAMP-mediated holoenzyme activation was facilitated by a factor of 2–4, and lead to a decreased affinity of the mutant C subunit for R subunits, significantly affecting RII containing holoenzymes.  相似文献   
7.
An Enterococcus faecalis mutant strain with a reduced ability for biofilm formation and primary attachment when compared to the high biofilm-forming wild-type strain was characterized by molecular biological and proteomic approaches. A point mutation in the srt-1 gene, which encodes a sortase-type enzyme and is part of the recently described bee (biofilm enhancer in Enterococcus) gene cluster, could be identified in the mutant strain. The Srt-1 deficiency resulted in a loss of the Bee-2 protein within a high molecular weight complex in cell surface protein extracts, as determined by mass spectrometry. These findings strongly suggest a specific linkage of Bee-2 to Bee-1 and Bee-3 within a complex by Srt-1. Furthermore, the identification of specific pilin motifs conserved in surface proteins of gram-positive bacteria indicated a possible involvement of the bee genes in the formation of pili structures, and may thus play a role in enhancing biofilm formation in Enterococcus faecalis.  相似文献   
8.
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.  相似文献   
9.

Background  

Rupture of the cap of a vulnerable plaque present in a coronary vessel may cause myocardial infarction and death. Cap rupture occurs when the peak cap stress exceeds the cap strength. The mechanical stress within a cap depends on the plaque morphology and the material characteristics of the plaque components. A parametric study was conducted to assess the effect of intima stiffness and plaque morphology on peak cap stress.  相似文献   
10.
The rise in bacterial resistance to antibiotics demonstrates the medical need for new antibacterial agents. One approach to this problem is to identify new antibacterials that act through validated drug targets such as bacterial DNA gyrase. DNA gyrase uses the energy of ATP hydrolysis to introduce negative supercoils into plasmid and chromosomal DNA and is essential for DNA replication. Inhibition of the ATPase activity of DNA gyrase is the mechanism by which coumarin-class antibiotics such as novobiocin inhibit bacterial growth. Although ATPase inhibitors exhibit potent antibacterial activity against gram-positive pathogens, no gyrase ATPase activity from a gram-positive organism is described in the literature. To address this, we developed and optimized an enzyme-coupled phosphate assay and used this assay to characterize the ATPase kinetics of Streptococcus pneumoniae gyrase. The S. pneumoniae enzyme exhibits cooperativity with ATP and requires organic potassium salts. We also studied inhibition of the enzyme by novobiocin. Apparent inhibition constants for novobiocin increased linearly with ATP concentration, indicative of an ATP-competitive mechanism. Similar binding affinities were measured by isothermal titration calorimetry. These results reveal unique features of the S. pneumoniae DNA gyrase ATPase and demonstrate the utility of the assay for screening and kinetic characterization of ATPase inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号