首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

2.
Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50–100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2O) and ammonia (NH3) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N‐enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33–67%), but reduced dissolved inorganic N leaching (?48%, ?56% to ?38%), N2O emission (?44%, ?48% to ?39%) and NO emission (?24%, ?38% to ?8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34–93%) and productivity of grain (9%, 6–13%), straw (15%, 12–18%), vegetable (5%, 0–10%) and pasture hay (14%, 8–20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha?1 yr?1 for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win‐win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully considered before large‐scale application.  相似文献   

3.
The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N2O) emissions from sugarcane cultivation. We quantified N2O emissions from soil covered with different amounts of sugarcane straw and determined the direct N2O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by‐products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N2O emissions relative to bare soil (control). N‐fertilizer increased N2O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N‐fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N2O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N2O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.  相似文献   

4.
No‐tillage and reduced tillage (NT/RT) management practices are being promoted in agroecosystems to reduce erosion, sequester additional soil C and reduce production costs. The impact of NT/RT on N2O emissions, however, has been variable with both increases and decreases in emissions reported. Herein, we quantitatively synthesize studies on the short‐ and long‐term impact of NT/RT on N2O emissions in humid and dry climatic zones with emissions expressed on both an area‐ and crop yield‐scaled basis. A meta‐analysis was conducted on 239 direct comparisons between conventional tillage (CT) and NT/RT. In contrast to earlier studies, averaged across all comparisons, NT/RT did not alter N2O emissions compared with CT. However, NT/RT significantly reduced N2O emissions in experiments >10 years, especially in dry climates. No significant correlation was found between soil texture and the effect of NT/RT on N2O emissions. When fertilizer‐N was placed at ≥5 cm depth, NT/RT significantly reduced area‐scaled N2O emissions, in particular under humid climatic conditions. Compared to CT under dry climatic conditions, yield‐scaled N2O increased significantly (57%) when NT/RT was implemented <10 years, but decreased significantly (27%) after ≥10 years of NT/RT. There was a significant decrease in yield‐scaled N2O emissions in humid climates when fertilizer‐N was placed at ≥5 cm depth. Therefore, in humid climates, deep placement of fertilizer‐N is recommended when implementing NT/RT. In addition, NT/RT practices need to be sustained for a prolonged time, particularly in dry climates, to become an effective mitigation strategy for reducing N2O emissions.  相似文献   

5.
Nitrous oxide emissions from a cropped soil in a semi-arid climate   总被引:5,自引:0,他引:5  
Understanding nitrous oxide (N2O) emissions from agricultural soils in semi‐arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain‐fed, cropped soil in a semi‐arid region of south‐western Australia for one year on a sub‐daily basis. The site included N‐fertilized (100 kg N ha?1 yr?1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (?1.8 to 7.3 g N2O‐N ha?1 day?1) and culminated in an annual loss of 0.11 kg N2O‐N ha?1 from N‐fertilized soil and 0.09 kg N2O‐N ha?1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background’ emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi‐arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background’ emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi‐arid regions on global terrestrial N2O emissions.  相似文献   

6.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   

7.
Land‐use/land‐cover change (LULCC) often results in degradation of natural wetlands and affects the dynamics of greenhouse gases (GHGs). However, the magnitude of changes in GHG emissions from wetlands undergoing various LULCC types remains unclear. We conducted a global meta‐analysis with a database of 209 sites to examine the effects of LULCC types of constructed wetlands (CWs), croplands (CLs), aquaculture ponds (APs), drained wetlands (DWs), and pastures (PASs) on the variability in CO2, CH4, and N2O emissions from the natural coastal wetlands, riparian wetlands, and peatlands. Our results showed that the natural wetlands were net sinks of atmospheric CO2 and net sources of CH4 and N2O, exhibiting the capacity to mitigate greenhouse effects due to negative comprehensive global warming potentials (GWPs; ?0.9 to ?8.7 t CO2‐eq ha?1 year?1). Relative to the natural wetlands, all LULCC types (except CWs from coastal wetlands) decreased the net CO2 uptake by 69.7%?456.6%, due to a higher increase in ecosystem respiration relative to slight changes in gross primary production. The CWs and APs significantly increased the CH4 emissions compared to those of the coastal wetlands. All LULCC types associated with the riparian wetlands significantly decreased the CH4 emissions. When the peatlands were converted to the PASs, the CH4 emissions significantly increased. The CLs, as well as DWs from peatlands, significantly increased the N2O emissions in the natural wetlands. As a result, all LULCC types (except PASs from riparian wetlands) led to remarkably higher GWPs by 65.4%?2,948.8%, compared to those of the natural wetlands. The variability in GHG fluxes with LULCC was mainly sensitive to changes in soil water content, water table, salinity, soil nitrogen content, soil pH, and bulk density. This study highlights the significant role of LULCC in increasing comprehensive GHG emissions from global natural wetlands, and our results are useful for improving future models and manipulative experiments.  相似文献   

8.
The long‐term effects of conservation management practices on greenhouse gas fluxes from tropical/subtropical croplands remain to be uncertain. Using both manual and automatic sampling chambers, we measured N2O and CH4 fluxes at a long‐term experimental site (1968–present) in Queensland, Australia from 2006 to 2009. Annual net greenhouse gas fluxes (NGGF) were calculated from the 3‐year mean N2O and CH4 fluxes and the long‐term soil organic carbon changes. N2O emissions exhibited clear daily, seasonal and interannual variations, highlighting the importance of whole‐year measurement over multiple years for obtaining temporally representative annual emissions. Averaged over 3 years, annual N2O emissions from the unfertilized and fertilized soils (90 kg N ha?1 yr?1 as urea) amounted to 138 and 902 g N ha?1, respectively. The average annual N2O emissions from the fertilized soil were 388 g N ha?1 lower under no‐till (NT) than under conventional tillage (CT) and 259 g N ha?1 higher under stubble retention (SR) than under stubble burning (SB). Annual N2O emissions from the unfertilized soil were similar between the contrasting tillage and stubble management practices. The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT‐SB, CT‐SR, NT‐SB and NT‐SR treatments, respectively. Annual CH4 fluxes from the soil were very small (?200–300 g CH4 ha?1 yr?1) with no significant difference between treatments. The NGGF were 277–350 kg CO2‐e ha?1 yr?1 for the unfertilized treatments and 401–710 kg CO2‐e ha?1 yr?1 for the fertilized treatments. Among the fertilized treatments, N2O emissions accounted for 52–97% of NGGF and NT‐SR resulted in the lowest NGGF (401 kg CO2‐e ha?1 yr?1 or 140 kg CO2‐e t?1 grain). Therefore, NT‐SR with improved N fertilizer management practices was considered the most promising management regime for simultaneously achieving maximal yield and minimal NGGF.  相似文献   

9.
Recycling of livestock manure to agricultural land may reduce the use of synthetic fertilizer and thereby enhance the sustainability of food production. However, the effects of substitution of fertilizer by manure on crop yield, nitrogen use efficiency (NUE), and emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) as function of soil and manure properties, experimental duration and application strategies have not been quantified systematically and convincingly yet. Here, we present a meta‐analysis of these effects using results of 143 published studies in China. Results indicate that the partial substitution of synthetic fertilizers by manure significantly increased the yield by 6.6% and 3.3% for upland crop and paddy rice, respectively, but full substitution significantly decreased yields (by 9.6% and 4.1%). The response of crop yields to manure substitution varied with soil pH and experimental durations, with relatively large positive responses in acidic soils and long‐term experiments. NUE increased significantly at a moderate ratio (<40%) of substitution. NH3 emissions were significantly lower with full substitution (62%–77%), but not with partial substitution. Emissions of CH4 from paddy rice significantly increased with substitution ratio (SR), and varied by application rates and manure types, but N2O emissions decreased. The SR did not significantly influence N2O emissions from upland soils, and a relative scarcity of data on certain manure characteristic was found to hamper identification of the mechanisms. We derived overall mean N2O emission factors (EF) of 0.56% and 0.17%, as well as NH3 EFs of 11.1% and 6.5% for the manure N applied to upland and paddy soils, respectively. Our study shows that partial substitution of fertilizer by manure can increase crop yields, and decrease emissions of NH3 and N2O, but depending on site‐specific conditions. Manure addition to paddy rice soils is recommended only if abatement strategies for CH4 emissions are also implemented.  相似文献   

10.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

11.
A continuous rise in the global demand for palm oil has resulted in the large‐scale expansion of oil palm plantations and generated environmental controversy. Efforts to increase the sustainability of oil palm cultivation include the recycling of oil mill and pruning residues in the field, but this may increase soil methane (CH4) emissions. This study reports the results of yearlong field‐based measurements of soil nitrous oxide (N2O) and CH4 emissions from commercial plantations in North Sumatra, Indonesia. One experiment investigated the effects of soil‐water saturation on N2O and CH4 emissions from inorganic fertilizers and organic amendments by simulating 25 mm rainfall per day for 21 days. Three additional experiments focused on emissions from (a) inorganic fertilizer (urea), (b) combination of enriched mulch with urea and (c) organic amendments (empty fruit bunches, enriched mulch and pruned oil palm fronds) applied in different doses and spatial layouts (placed in inter‐row zones, piles, patches or bands) for a full year. The higher dose of urea led to a significantly higher N2O emissions with the emission factors ranging from 2.4% to 2.7% in the long‐term experiment, which is considerably higher than the IPCC standard of 1%. Organic amendments were a significant source of both N2O and CH4 emissions, but N2O emissions from organic amendments were 66%–86% lower than those from inorganic fertilizers. Organic amendments applied in piles emitted 63% and 71% more N2O and CH4, respectively, than when spread out. With twice the dose of organic amendments, cumulative emissions were up to three times greater. The (simulated) rainwater experiment showed that the increase in precipitation led to a significant increase in N2O emissions significantly, suggesting that the time of fertilization is a critical management option for reducing emissions. The results from this study could therefore help guide residue and nutrient management practices to reduce emissions while ensuring better nutrient recycling for sustainable oil palm production systems.  相似文献   

12.
Nitrification inhibitors show promise in decreasing nitrous oxide (N2O) emission from agricultural systems worldwide, but they may be much less effective than previously thought when both direct and indirect emissions are taken into account. Whilst nitrification inhibitors are effective at decreasing direct N2O emission and nitrate (NO3) leaching, limited studies suggest that they may increase ammonia (NH3) volatilization and, subsequently, indirect N2O emission. These dual effects are typically not considered when evaluating the inhibitors as a climate change mitigation tool. Here, we collate results from the literature that simultaneously examined the effects of nitrification inhibitors on N2O and NH3 emissions. We found that nitrification inhibitors decreased direct N2O emission by 0.2–4.5 kg N2O‐N ha?1 (8–57%), but generally increased NH3 emission by 0.2–18.7 kg NH3‐N ha?1 (3–65%). Taking into account the estimated indirect N2O emission from deposited NH3, the overall impact of nitrification inhibitors ranged from ?4.5 (reduction) to +0.5 (increase) kg N2O‐N ha?1. Our results suggest that the beneficial effect of nitrification inhibitors in decreasing direct N2O emission can be undermined or even outweighed by an increase in NH3 volatilization.  相似文献   

13.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   

14.
Understanding nitrous oxide (N2O) and methane (CH4) fluxes from agricultural soils in semi‐arid climates is necessary to fully assess greenhouse gas emissions from bioenergy cropping systems, and to improve our knowledge of global terrestrial gaseous exchange. Canola is grown globally as a feedstock for biodiesel production, however, resulting soil greenhouse gas fluxes are rarely reported for semi‐arid climates. We measured soil N2O and CH4 fluxes from a rain‐fed canola crop in a semi‐arid region of south‐western Australia for 1 year on a subdaily basis. The site included N fertilized (75 kg N ha?1 yr?1) and nonfertilized plots. Daily N2O fluxes were low (?1.5 to 4.7 g N2O‐N ha?1 day?1) and culminated in an annual loss of 128 g N2O‐N ha?1 (standard error, 12 g N2O‐N ha?1) from N fertilized soil and 80 g N2O‐N ha?1 (standard error, 11 g N2O‐N ha?1) from nonfertilized soil. Daily CH4 fluxes were also low (?10.3 to 11.9 g CH4‐C ha?1 day?1), and did not differ with treatments, with an average annual net emission of 6.7 g CH4–C ha?1 (standard error, 20 g CH4–C ha?1). Greatest daily N2O fluxes occurred when the soil was fallow, and following a series of summer rainfall events. Summer rainfall increased soil water contents and available N, and occurred when soil temperatures were >25 °C, and when there was no active plant growth to compete with soil microorganisms for mineralized N; conditions known to promote N2O production. The proportion of N fertilizer emitted as N2O, after correction for emissions from the no N fertilizer treatment, was 0.06%; 17 times lower than IPCC default value for the application of synthetic N fertilizers to land (1.0%). Soil greenhouse gas fluxes from bioenergy crop production in semi‐arid regions are likely to have less influence on the net global warming potential of biofuel production than in temperate climates.  相似文献   

15.

Background and aims

Knowledge on nitrous oxide (N2O) and nitric oxide (NO) emissions from typical cropping systems in the Tai-Lake region is important for estimating regional inventory and proposing effective N2O and NO mitigation options. This study aimed at a) characterizing the seasonal and annual emissions of both gases from the major cropping systems, and b) determining their direct emission factors (EFds) as the key parameters for inventory compilation.

Methods

Measurements of N2O and NO emissions were conducted year-round in the Tai-Lake region using a static opaque chamber method. The measurements involved a typical rice-wheat rotation ecosystem and a vegetable field. The two types of croplands were subjected to both a fertilized treatment and a control treatment without nitrogen addition. In the rice-wheat ecosystem, N2O emissions were measured throughout an entire year-round rotation spanning from June 2003 to June 2004, whereas NO emissions were measured only during the non-rice period. In the vegetable field, both N2O and NO emissions were measured from November 2003 to November 2004.

Results

During the investigation period, the average cumulative N2O and NO emissions under the fertilized conditions amounted to 3.80 and 0.80 (during the non-rice period for NO) kg?N?ha?1, respectively, in the rice-wheat field, and 20.81 and 47.13?kg?N ha?1, respectively, in the vegetable field. The average total N2O and NO emissions under the control conditions were 1.39 and 0.29 (during the non-rice period for NO) kg?N?ha?1, respectively, in the rice?wheat rotation, and 2.98 and 0.80?kg?N ha?1, respectively, in the vegetable field. The direct emission factor (EFd, which is defined as the loss rate of applied nitrogen via N2O or NO emissions in the current season or year) of N2O was annually determined to be 0.56?% in the rice-wheat field, while the seasonal EFd of NO was 0.34?% during the non-rice period of the rotation cycle. In the vegetable field, the seasonal EFds of N2O and NO varied from 0.15?% to 14.50?% and 0.80?% to 28.21?%, respectively, among different crop seasons; and the annual EFds were 1.38?% and 3.59?%, respectively.

Conclusions

This study suggests that conventional vegetable fields associated with intensive synthetic nitrogen application, as well as addition of manure slurry, may substantially contribute to the regional N2O and NO emissions though they account for a relatively small portion of the farmlands in the Tai-Lake region. However, further studies to be conducted at multiple field sites with conventional vegetable and rice-based fields are needed to test this conclusion.  相似文献   

16.
Organic compounds and mineral nitrogen (N) usually increase nitrous oxide (N2O) emissions. Vinasse, a by‐product of bio‐ethanol production that is rich in carbon, nitrogen, and potassium, is recycled in sugarcane fields as a bio‐fertilizer. Vinasse can contribute significantly to N2O emissions when applied with N in sugarcane plantations, a common practice. However, the biological processes involved in N2O emissions under this management practice are unknown. This study investigated the roles of nitrification and denitrification in N2O emissions from straw‐covered soils amended with different vinasses (CV: concentrated and V: nonconcentrated) before or at the same time as mineral fertilizers at different time points of the sugarcane cycle in two seasons. N2O emissions were evaluated for 90 days, the period that occurs most of the N2O emission from fertilizers; the microbial genes encoding enzymes involved in N2O production (archaeal and bacterial amoA, fungal and bacterial nirK, and bacterial nirS and nosZ), total bacteria, and total fungi were quantified by real‐time PCR. The application of CV and V in conjunction with mineral N resulted in higher N2O emissions than the application of N fertilizer alone. The strategy of vinasse application 30 days before mineral N reduced N2O emissions by 65% for CV, but not for V. Independent of rainy or dry season, the microbial processes were nitrification by ammonia‐oxidizing bacteria (AOB) and archaea and denitrification by bacteria and fungi. The contributions of each process differed and depended on soil moisture, soil pH, and N sources. We concluded that amoA‐AOB was the most important gene related to N2O emissions, which indicates that nitrification by AOB is the main microbial‐driven process linked to N2O emissions in tropical soil. Interestingly, fungal nirK was also significantly correlated with N2O emissions, suggesting that denitrification by fungi contributes to N2O emission in soils receiving straw and vinasse application.  相似文献   

17.
No‐till (NT) practices are among promising options toward adaptation and mitigation of climate change. However, the mitigation effectiveness of NT depends not only on its carbon sequestration potential but also on soil‐derived CH4 and N2O emissions. A meta‐analysis was conducted, using a dataset involving 136 comparisons from 39 studies in China, to identify site‐specific factors which influence CH4 emission, CH4 uptake, and N2O emission under NT. Comparative treatments involved NT without residue retention (NT0), NT with residue retention (NTR), compared to plow tillage (PT) with residue removed (PT0). Overall, NT0 significantly decreased CH4 emission by ~30% (< 0.05) compared to PT0 with an average emission 218.8 kg ha−1 for rice paddies. However, the increase in N2O emission could partly offset the benefits of the decrease in CH4 emission under NT compared to PT0. NTR significantly enhanced N2O emission by 82.1%, 25.5%, and 20.8% (< 0.05) compared to PT0 for rice paddies, acid soils, and the first 5 years of the experiments, respectively. The results from categorical meta‐analysis indicated that the higher N2O emission could be mitigated by adopting NT within alkaline soils, for long‐term duration, and with less N fertilization input when compared to PT0. In addition, the natural log (lnR) of response ratio of CH4 and N2O emissions under NT correlated positively (enhancing emission) with climate factors (temperature and precipitation) and negatively (reducing emission) with experimental duration, suggesting that avoiding excess soil wetness and using NT for a long term could enhance the benefits of NT. Therefore, a thorough understanding of the conditions favoring greenhouse gas(es) reductions is essential to achieving climate change mitigation and advancing food security in China.  相似文献   

18.
Livestock manure contributes considerably to global emissions of ammonia (NH3) and greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we present a meta‐analysis and integrated assessment of the effects of mitigation measures on NH3, CH4 and (direct and indirect) N2O emissions from the whole manure management chain. We analysed the effects of mitigation technologies on NH3, CH4 and N2O emissions from individual sources statistically using results of 126 published studies. Whole‐chain effects on NH3 and GHG emissions were assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for (i) housing via lowering the dietary crude protein (CP) content (24–65%, compared to the reference situation), for (ii) external slurry storages via acidification (83%) and covers of straw (78%) or artificial films (98%), for (iii) solid manure storages via compaction and covering (61%, compared to composting), and for (iv) manure application through band spreading (55%, compared to surface application), incorporation (70%) and injection (80%). Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in N2O emissions were found for straw‐covered slurry storages (by two orders of magnitude) and manure injection (by 26–199%). These side‐effects of straw covers and slurry injection on N2O emission were relatively small when considering the total GHG emissions from the manure chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of a specific gas or emissions source, by which there is a risk of unwanted trade‐offs in the manure management chain. Proper farm‐scale combinations of mitigation measures are important to minimize impacts of livestock production on global emissions of NH3 and GHG.  相似文献   

19.
Differences in soil nitrous oxide (N2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no‐till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N2O emissions were higher from annual grain and N‐fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full‐rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no‐till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop × management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N2O‐N ha?1 yr?1 and were best predicted by IPCC Tier 1 and ΔEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil pools (r2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N2O emissions were poorly predicted by any measured variables. Overall, long‐term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.  相似文献   

20.
Overviewing the European carbon (C), greenhouse gas (GHG), and non‐GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr?1, and fossil fuel imports are 1.6 Pg yr?1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy – five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100‐year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO‐N, 70% of total N2O‐N, and 95% of total NH3‐N emissions of Europe. European soils are a net C sink (114 Tg yr?1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C‐equivalent yr?1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non‐GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr?1. Nevertheless, for the European trace‐gas balance, land‐use intensity is more important than land‐use change. This study shows that emissions of GHGs and non‐GHGs significantly distort the C cycle and eliminate apparent C sinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号