首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural activities have greatly altered the global nitrogen (N) cycle and produced nitrogenous gases of environmental significance. More than half of all chemical N fertilizer produced globally is used in crop production in East, Southeast and South Asia, where rice is central to nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering background emission and emissions resulting from N added to croplands, including chemical N, animal manure, biologically fixed N and N in crop residues returned to fields. Background emission fluxes of N2O and NO from croplands were estimated to be 1.22 and 0.57 kg N ha?1 yr?1, respectively. Separate fertilizer‐induced emission factors were estimated for upland fields and rice fields. Total N2O emission from croplands in the study region was estimated to be 1.19 Tg N yr?1, with 43% contributed by background emissions. The average fertilizer‐induced N2O emission, however, accounts for only 0.93% of the applied N, which is less than the default IPCC value of 1.25%, because of the low emission factor from paddy fields. Total NO emission was 591 Gg N yr?1 in the study region, with 40% from background emissions. The average fertilizer‐induced NO emission factor was 0.48%. Total NH3 emission was estimated to be 11.8 Tg N yr?1. The use of urea and ammonium bicarbonate and the cultivation of rice led to a high average NH3 loss rate from chemical N fertilizer in the study region. Emissions were displayed at a 0.5° × 0.5° resolution with the use of a global landuse database.  相似文献   

2.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

3.
The long‐term effects of conservation management practices on greenhouse gas fluxes from tropical/subtropical croplands remain to be uncertain. Using both manual and automatic sampling chambers, we measured N2O and CH4 fluxes at a long‐term experimental site (1968–present) in Queensland, Australia from 2006 to 2009. Annual net greenhouse gas fluxes (NGGF) were calculated from the 3‐year mean N2O and CH4 fluxes and the long‐term soil organic carbon changes. N2O emissions exhibited clear daily, seasonal and interannual variations, highlighting the importance of whole‐year measurement over multiple years for obtaining temporally representative annual emissions. Averaged over 3 years, annual N2O emissions from the unfertilized and fertilized soils (90 kg N ha?1 yr?1 as urea) amounted to 138 and 902 g N ha?1, respectively. The average annual N2O emissions from the fertilized soil were 388 g N ha?1 lower under no‐till (NT) than under conventional tillage (CT) and 259 g N ha?1 higher under stubble retention (SR) than under stubble burning (SB). Annual N2O emissions from the unfertilized soil were similar between the contrasting tillage and stubble management practices. The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT‐SB, CT‐SR, NT‐SB and NT‐SR treatments, respectively. Annual CH4 fluxes from the soil were very small (?200–300 g CH4 ha?1 yr?1) with no significant difference between treatments. The NGGF were 277–350 kg CO2‐e ha?1 yr?1 for the unfertilized treatments and 401–710 kg CO2‐e ha?1 yr?1 for the fertilized treatments. Among the fertilized treatments, N2O emissions accounted for 52–97% of NGGF and NT‐SR resulted in the lowest NGGF (401 kg CO2‐e ha?1 yr?1 or 140 kg CO2‐e t?1 grain). Therefore, NT‐SR with improved N fertilizer management practices was considered the most promising management regime for simultaneously achieving maximal yield and minimal NGGF.  相似文献   

4.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

5.

Background and aims

Knowledge on nitrous oxide (N2O) and nitric oxide (NO) emissions from typical cropping systems in the Tai-Lake region is important for estimating regional inventory and proposing effective N2O and NO mitigation options. This study aimed at a) characterizing the seasonal and annual emissions of both gases from the major cropping systems, and b) determining their direct emission factors (EFds) as the key parameters for inventory compilation.

Methods

Measurements of N2O and NO emissions were conducted year-round in the Tai-Lake region using a static opaque chamber method. The measurements involved a typical rice-wheat rotation ecosystem and a vegetable field. The two types of croplands were subjected to both a fertilized treatment and a control treatment without nitrogen addition. In the rice-wheat ecosystem, N2O emissions were measured throughout an entire year-round rotation spanning from June 2003 to June 2004, whereas NO emissions were measured only during the non-rice period. In the vegetable field, both N2O and NO emissions were measured from November 2003 to November 2004.

Results

During the investigation period, the average cumulative N2O and NO emissions under the fertilized conditions amounted to 3.80 and 0.80 (during the non-rice period for NO) kg?N?ha?1, respectively, in the rice-wheat field, and 20.81 and 47.13?kg?N ha?1, respectively, in the vegetable field. The average total N2O and NO emissions under the control conditions were 1.39 and 0.29 (during the non-rice period for NO) kg?N?ha?1, respectively, in the rice?wheat rotation, and 2.98 and 0.80?kg?N ha?1, respectively, in the vegetable field. The direct emission factor (EFd, which is defined as the loss rate of applied nitrogen via N2O or NO emissions in the current season or year) of N2O was annually determined to be 0.56?% in the rice-wheat field, while the seasonal EFd of NO was 0.34?% during the non-rice period of the rotation cycle. In the vegetable field, the seasonal EFds of N2O and NO varied from 0.15?% to 14.50?% and 0.80?% to 28.21?%, respectively, among different crop seasons; and the annual EFds were 1.38?% and 3.59?%, respectively.

Conclusions

This study suggests that conventional vegetable fields associated with intensive synthetic nitrogen application, as well as addition of manure slurry, may substantially contribute to the regional N2O and NO emissions though they account for a relatively small portion of the farmlands in the Tai-Lake region. However, further studies to be conducted at multiple field sites with conventional vegetable and rice-based fields are needed to test this conclusion.  相似文献   

6.
Fertilized temperate croplands export large amounts of reactive nitrogen (N), which degrades water and air quality and contributes to climate change. Fertilizer use is poised to increase in the tropics, where widespread food insecurity persists and increased agricultural productivity will be needed, but much less is known about the potential consequences of increased tropical N fertilizer application. We conducted a meta‐analysis of tropical field studies of nitrate leaching, nitrous oxide emissions, nitric oxide emissions, and ammonia volatilization totaling more than 1,000 observations. We found that the relationship between N inputs and losses differed little between temperate and tropical croplands, although total nitric oxide losses were higher in the tropics. Among the potential drivers we studied, the N input rate controlled all N losses, but soil texture and water inputs also controlled hydrological N losses. Irrigated systems had significantly higher losses of ammonia, and pasture agroecosystems had higher nitric oxide losses. Tripling of fertilizer N inputs to tropical croplands from 50 to 150 kg N ha?1 year?1 would have substantial environmental implications and would lead to increases in nitrate leaching (+30%), nitrous oxide emissions (+30%), nitric oxide (+66%) emissions, and ammonia volatilization (+74%), bringing tropical agricultural nitrate, nitrous oxide, and ammonia losses in line with temperate losses and raising nitric oxide losses above them.  相似文献   

7.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

8.
The effects of increased reactive nitrogen (N) deposition in forests depend largely on its fate in the ecosystems. However, our knowledge on the fates of deposited N in tropical forest ecosystems and its retention mechanisms is limited. Here, we report the results from the first whole ecosystem 15N labeling experiment performed in a N‐rich old‐growth tropical forest in southern China. We added 15N tracer monthly as 15NH415NO3 for 1 year to control plots and to N‐fertilized plots (N‐plots, receiving additions of 50 kg N ha?1 yr?1 for 10 years). Tracer recoveries in major ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention decreased to 52% in the N‐plots. Soil was the dominant sink, retaining 37% and 28% of the labeled N input in the control and N‐plots, respectively. Leaching below 20 cm was 50 kg N ha?1 yr?1 in the control plots and was close to the N input (51 kg N ha?1 yr?1), indicating N saturation of the top soil. Nitrogen addition increased N leaching to 73 kg N ha?1 yr?1. However, of these only 7 and 23 kg N ha?1 yr?1 in the control and N‐plots, respectively, originated from the labeled N input. Our findings indicate that deposited N, like in temperate forests, is largely incorporated into plant and soil pools in the short term, although the forest is N‐saturated, but high cycling rates may later release the N for leaching and/or gaseous loss. Thus, N cycling rates rather than short‐term N retention represent the main difference between temperate forests and the studied tropical forest.  相似文献   

9.
Overviewing the European carbon (C), greenhouse gas (GHG), and non‐GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr?1, and fossil fuel imports are 1.6 Pg yr?1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy – five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100‐year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO‐N, 70% of total N2O‐N, and 95% of total NH3‐N emissions of Europe. European soils are a net C sink (114 Tg yr?1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C‐equivalent yr?1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non‐GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr?1. Nevertheless, for the European trace‐gas balance, land‐use intensity is more important than land‐use change. This study shows that emissions of GHGs and non‐GHGs significantly distort the C cycle and eliminate apparent C sinks.  相似文献   

10.
Fire is a major factor controlling global carbon (C) and nitrogen (N) cycling. While direct C and N losses caused by combustion have been comparably well established, important knowledge gaps remain on postfire N losses. Here, we quantified both direct C and N combustion losses as well as postfire gaseous losses (N2O, NO and N2) and N leaching after a high‐intensity experimental fire in an old shrubland in central Spain. Combustion losses of C and N were 9.4 Mg C/ha and 129 kg N/ha, respectively, representing 66% and 58% of initial aboveground vegetation and litter stocks. Moreover, fire strongly increased soil mineral N concentrations by several magnitudes to a maximum of 44 kg N/ha 2 months after the fire, with N largely originating from dead soil microbes. Postfire soil emissions increased from 5.4 to 10.1 kg N ha?1 year?1 for N2, from 1.1 to 1.9 kg N ha?1 year?1 for NO and from 0.05 to 0.2 kg N ha?1 year?1 for N2O. Maximal leaching losses occurred 2 months after peak soil mineral N concentrations, but remained with 0.1 kg N ha?1 year?1 of minor importance for the postfire N mass balance. 15N stable isotope labelling revealed that 33% of the mineral N produced by fire was incorporated in stable soil N pools, while the remainder was lost. Overall, our work reveals significant postfire N losses dominated by emissions of N2 that need to be considered when assessing fire effects on ecosystem N cycling and mass balance. We propose indirect N gas emissions factors for the first postfire year, equalling to 7.7% (N2‐N), 2.7% (NO‐N) and 5.0% (N2O‐N) of the direct fire combustion losses of the respective N gas species.  相似文献   

11.

Background and aims

Continuous vegetable cultivation in greenhouses can easily induce soil degradation, which considerably affects the development of sustainable vegetable production. Recently, the reductive soil disinfestation (RSD) is widely used as an alternative to chemical soil disinfestations to improve degraded greenhouse vegetable soils. Considering the importance of nitrogen (N) for plant growth and environment effect, the internal N transformation processes and rates should be well investigated in degraded vegetable soils treated by RSD, but few works have been undertaken.

Methods

Three RSD-treated and three untreated degraded vegetable soils were chosen and a 15?N tracing incubation experiment differentially labeled with 15NH4NO3 or NH4 15NO3 was conducted at 25 °C under 50 % water holding capacity (WHC) for 96 h. Soil gross N transformation rates were calculated using a 15?N tracing model combined with Markov Chain Monte Carlo Metropolis algorithm (Müller et al. 2007), while the emissions of N2O and NO were also measured.

Results

RSD could significantly enhance the soil microbial NH4 + immobilization rate, the heterotrophic and autotrophic nitrification rates, and the NO3 ? turnover time. The ratio of heterotrophic nitrification to total inorganic N supply rate (mineralization + heterotrophic nitrification) increased greatly from 5.4 % in untreated vegetable soil to 56.1 % in treated vegetable soil. In addition, low release potential of NO and N2O was observed in RSD-treated vegetable soil, due to the decrease in the NO and N2O product ratios from heterotrophic and autotrophic nitrifications. These significant differences in gross N transformation rates, the supply processes and capacity of inorganic N, and the NO and N2O emissions between untreated and treated vegetable soils could be explained by the elimination of accumulated NO3 ?, increased pH, and decreased electrical conductivity (EC) caused by RSD. Noticeably, the NO3 ? consumption rates were still significantly lower than the NO3 ? production rates in RSD-treated vegetable soil.

Conclusions

Except for improving soil chemical properties, RSD could significantly alter the supply processes of inorganic N and reduce the release potential of N2O and NO in RSD-treated degraded vegetable soil. In order to retard the re-occurrence of NO3 ? accumulation, acidification and salinization and to promote the long-term productivity of greenhouse vegetable fields, the rational use of N fertilizer should be paid great attention to farmers in vegetable cultivation.  相似文献   

12.
Bioethanol from sugarcane is becoming an increasingly important alternative energy source worldwide as it is considered to be both economically and environmentally sustainable. Besides being produced from a tropical perennial grass with high photosynthetic efficiency, sugarcane ethanol is commonly associated with low N fertilizer use because sugarcane from Brazil, the world's largest sugarcane producer, has a low N demand. In recent years, several models have predicted that the use of sugarcane ethanol in replacement to fossil fuel could lead to high greenhouse gas (GHG) emission savings. However, empirical data that can be used to validate model predictions and estimates from indirect methodologies are scarce, especially with regard to emissions associated with different fertilization methods and agricultural management practices commonly used in sugarcane agriculture in Brazil. In this study, we provide in situ data on emissions of three GHG (CO2, N2O, and CH4) from sugarcane soils in Brazil and assess how they vary with fertilization methods and management practices. We measured emissions during the two main phases of the sugarcane crop cycle (plant and ratoon cane), which include different fertilization methods and field conditions. Our results show that N2O and CO2 emissions in plant cane varied significantly depending on the fertilization method and that waste products from ethanol production used as organic fertilizers with mineral fertilizer, as it is the common practice in Brazil, increase emission rates significantly. Cumulatively, the highest emissions were observed for ratoon cane treated with vinasse (liquid waste from ethanol production) especially as the amount of crop trash on the soil surface increased. Emissions of CO2 and N2O were 6.9 kg ha?1 yr?1 and 7.5 kg ha?1 yr?1, respectively, totaling about 3000 kg in CO2 equivalent ha?1 yr?1.  相似文献   

13.
Interest in bioenergy crops is increasing due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. We combined process‐based and geospatial models to estimate the potential biomass productivity of miscanthus and its potential impact on soil carbon stocks in the croplands of the continental United States. The optimum (climatic potential) rainfed productivity for field‐dried miscanthus biomass ranged from 1 to 23 Mg biomass ha?1 yr?1, with a spatial average of 13 Mg ha?1 yr?1 and a coefficient of variation of 30%. This variation resulted primarily from the spatial heterogeneity of effective rainfall, growing degree days, temperature, and solar radiation interception. Cultivating miscanthus would result in a soil organic carbon (SOC) sequestration at the rate of 0.16–0.82 Mg C ha?1 yr?1 across the croplands due to cessation of tillage and increased biomass carbon input into the soil system. We identified about 81 million ha of cropland, primarily in the eastern United States, that could sustain economically viable (>10 Mg ha?1 yr?1) production without supplemental irrigation, of which about 14 million ha would reach optimal miscanthus growth. To meet targets of the US Energy Independence and Security Act of 2007 using miscanthus as feedstock, 19 million ha of cropland would be needed (spatial average 13 Mg ha?1 yr?1) or about 16% less than is currently dedicated to US corn‐based ethanol production.  相似文献   

14.
The high uncertainty in land‐based CO2 fluxes estimates is thought to be mainly due to uncertainty in not only quantifying historical changes among forests, croplands, and grassland, but also due to different processes included in calculation methods. Inclusion of a nitrogen (N) cycle in models is fairly recent and strongly affects carbon (C) fluxes. In this study, for the first time, we use a model with C and N dynamics with three distinct historical reconstructions of land‐use and land‐use change (LULUC) to quantify LULUC emissions and uncertainty that includes the integrated effects of not only climate and CO2 but also N. The modeled global average emissions including N dynamics for the 1980s, 1990s, and 2000–2005 were 1.8 ± 0.2, 1.7 ± 0.2, and 1.4 ± 0.2 GtC yr?1, respectively, (mean and range across LULUC data sets). The emissions from tropics were 0.8 ± 0.2, 0.8 ± 0.2, and 0.7 ± 0.3 GtC yr?1, and the non tropics were 1.1 ± 0.5, 0.9 ± 0.2, and 0.7 ± 0.1 GtC yr?1. Compared to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, particularly in the non tropics. In the model, N limitation reduces regrowth rates of vegetation in temperate areas resulting in higher net emissions. Our results indicate that exclusion of N dynamics leads to an underestimation of LULUC emissions by around 70% in the non tropics, 10% in the tropics, and 40% globally in the 1990s. The differences due to inclusion/exclusion of the N cycle of 0.1 GtC yr?1 in the tropics, 0.6 GtC yr?1 in the non tropics, and 0.7 GtC yr?1 globally (mean across land‐cover data sets) in the 1990s were greater than differences due to the land‐cover data in the non tropics and globally (0.2 GtC yr?1). While land‐cover information is improving with satellite and inventory data, this study indicates the importance of accounting for different processes, in particular the N cycle.  相似文献   

15.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

16.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   

17.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

18.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

19.
Biochar application to croplands has been proposed as a potential strategy to decrease losses of soil‐reactive nitrogen (N) to the air and water. However, the extent and spatial variability of biochar function at the global level are still unclear. Using Random Forest regression modelling of machine learning based on data compiled from the literature, we mapped the impacts of different biochar types (derived from wood, straw, or manure), and their interactions with biochar application rates, soil properties, and environmental factors, on soil N losses (NH3 volatilization, N2O emissions, and N leaching) and crop productivity. The results show that a suitable distribution of biochar across global croplands (i.e., one application of <40 t ha?1 wood biochar for poorly buffered soils, such as those characterized by soil pH<5, organic carbon<1%, or clay>30%; and one application of <80 t ha?1 wood biochar, <40 t ha?1 straw biochar, or <10 t ha?1 manure biochar for other soils) could achieve an increase in global crop yields by 222–766 Tg yr?1 (4%–16% increase), a mitigation of cropland N2O emissions by 0.19–0.88 Tg N yr?1 (6%–30% decrease), a decline of cropland N leaching by 3.9–9.2 Tg N yr?1 (12%–29% decrease), but also a fluctuation of cropland NH3 volatilization by ?1.9–4.7 Tg N yr?1 (?12%–31% change). The decreased sum of the three major reactive N losses amount to 1.7–9.4 Tg N yr?1, which corresponds to 3%–14% of the global cropland total N loss. Biochar generally has a larger potential for decreasing soil N losses but with less benefits to crop production in temperate regions than in tropical regions.  相似文献   

20.
Many assessments of product carbon footprint (PCF) for agricultural products omit emissions arising from land‐use change (LUC). In this study, we developed a framework based on IPCC national greenhouse gas inventory methodologies to assess the impacts of LUC from crop production using oil palm, soybean and oilseed rape as examples. Using ecological zone, climate and soil types from the top 20 producing countries, calculated emissions for transitions from natural vegetation to cropland on mineral soils under typical management ranged from ?4.5 to 29.4 t CO2‐eq ha?1 yr?1 over 20 years for oil palm and 1.2–47.5 t CO2‐eq ha?1 yr?1 over 20 years for soybeans. Oilseed rape showed similar results to soybeans, but with lower maximum values because it is mainly grown in areas with lower C stocks. GHG emissions from other land‐use transitions were between 62% and 95% lower than those from natural vegetation for the arable crops, while conversions to oil palm were a sink for C. LUC emissions were considered on a national basis and also expressed per‐tonne‐of‐oil‐produced. Weighted global averages indicate that, depending on the land‐use transition, oil crop production on newly converted land contributes between ?3.1 and 7.0 t CO2‐eq t oil production?1 yr?1 for palm oil, 11.9–50.6 t CO2‐eq t oil production?1 yr?1 for soybean oil, and 7.7–31.4 t CO2‐eq t oil production?1 yr?1 for rapeseed oil. Assumptions made about crop and LUC distribution within countries contributed up to 66% error around the global averages for natural vegetation conversions. Uncertainty around biomass and soil C stocks were also examined. Finer resolution data and information (particularly on land management and yield) could improve reliability of the estimates but the framework can be used in all global regions and represents an important step forward for including LUC emissions in PCFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号