首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱牛  王金牛  王旭峰  罗栋梁  申承  盖艾鸿 《生态学报》2023,43(14):5967-5979
采用开路式涡度相关系统,针对三江并流核心区西藏红拉山滇金丝猴国家自然保护区,通过测量和分析非生长季亚高山常绿针叶林净生态系统碳交换量(NEE),探讨了亚高山森林非生长季CO2通量特征及其主要影响因子。保护区常绿针叶林NEE值在非生长季具有明显“U”型变化曲线,白天表现为碳吸收,夜间表现为碳释放,日间CO2吸收高峰介于12:00到15:00之间,平均每天碳汇时间在10 h左右。非生长季各月NEE大小依次为:4月> 3月>2月>11月>1月>12月。研究期内气温(T)、相对湿度(RH)、饱和水汽压差(VPD)和光合有效辐射(PAR)等气象因子对净生态系统CO2交换量影响显著。此外,森林碳吸收对温度响应敏感,光合作用在整个非生长季较为明显。各影响因子中光合有效辐射对碳交换影响最大;夜间NEE与5 cm土壤温度呈极显著相关性(P<0.01)且NEE随着土壤温度升高而增大;整个非生长季NEE、生态系统呼吸量(Re)和总生态系统CO2交换量(GEE)分别为-596.759 g...  相似文献   

2.
开垦对黄河三角洲湿地净生态系统CO2交换的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来, 由于对湿地的不合理利用, 自然湿地被大面积地垦殖为农田, 导致湿地生态系统碳循环的模式发生改变, 从而影响了湿地生态系统碳汇功能。该研究通过涡度相关法, 对山东省东营市黄河三角洲芦苇(Phragmites australis)湿地和开垦多年的棉花(Gossypium spp.)农田的净生态系统CO2交换(NEE)进行了对比观测, 以探讨该地区典型生态系统NEE的变化规律及其影响因子, 揭示开垦对芦苇湿地NEE和碳汇功能的影响。结果表明: 在生长季, 湿地和农田生态系统NEE的日平均值各月均呈明显的“U”型变化曲线, 非生长季NEE的变幅很小。生长季湿地生态系统日最大净吸收值和释放值分别为16.04 g CO2·m-2·d-1(8月17日)和14.95 g CO2·m-2·d-1(8月9日); 农田生态系统日最大净吸收值和释放值分别为18.99 g CO2·m-2·d-1 (8月22日)和12.23 g CO2·m-2·d-1 (7月29日)。生长季白天两个生态系统NEE与光合有效辐射(PAR)之间呈直角双曲线关系; 非生长季NEE主要受土壤温度(Ts)的影响; 生态系统生长季夜间NEETs和土壤含水量(SWC)的共同影响; 湿地和农田的生态系统呼吸熵(Q10)分别为2.30和3.78。2011年生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的汇, 总净固碳量分别为780.95和647.35 g CO2·m-2, 开垦降低了湿地的碳吸收能力; 而在2011年非生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的源, CO2总释放量分别为181.90和111.55 g CO2·m-2。全年湿地和农田生态系统总净固碳量分别为599.05和535.80 g CO2·m-2。  相似文献   

3.
初小静  韩广轩 《生态学杂志》2015,26(10):2978-2990
湿地由于具有较高的初级生产力以及较低的有机质降解速率而成为缓解全球变暖的潜在有效碳汇.虽然近年来中国湿地生态系统CO2交换过程及其影响机制研究取得了一系列进展,但尚缺乏对数据进行系统性整合分析.基于29篇文献的数据,对中国21个典型湿地植被净生态系统CO2交换(NEE)、生态系统呼吸(Reco)、总初级生产力(GPP)、NEE的光响应参数以及Reco的温度响应参数进行整合分析,并探讨了这些指标对温度与降雨的响应.结果表明: 年尺度上,气温和降雨量对NEE(R2=50%,R2=57% )、GPP(R2=60%,R2=50%)和Reco(R2=44%,R2=50%)均有显著影响(P<0.05).生长季尺度上,NEE (R2=50%)、GPP (R2=36%)和Reco(R2=19%)与气温呈显著相关(P<0.05);同时NEE(R2=33%)和GPP(R2=25%)也与降雨量呈显著相关(P<0.05),但Reco与降雨量的相关关系不显著(P>0.05).生长季降雨量与最大光合速率(Amax)之间呈显著相关 (P<0.01),但与表观量子产率(α)、白天生态系统呼吸速率(Reco,day)无显著相关(P>0.05).生长季气温对α、Amax和Reco, day均无显著影响(P>0.05).生态系统基础呼吸速率(Rref)与降雨量无显著相关(P>0.05),但是生态系统呼吸的温度敏感系数(Q10)与降雨量呈显著的线性负相关(P<0.05),同时气温对Q10(R2=0.35)、Rref(R2=0.46)均产生显著影响(P<0.05).  相似文献   

4.
采用涡度相关法对2005年生长季内蒙古锡林河流域羊草(Leymus chinensis)草原净生态系统交换(Net ecosystem exchange, NEE)进行了观测。观测结果表明:作为生长季降雨量仅有126 mm的干旱年,锡林河流域羊草草原生态系统受到强烈的干旱胁迫,其净生态系统碳交换的日动态表现为具有两个吸收高峰,净吸收峰值出现在8∶00和18∶00左右。最大的CO2吸收率为-0.38 mg CO2·m-2·s-1,出现在6月底,与丰水年相比生态系统最大CO2吸收率下降了1倍。就整个生长季而言,不管是白天还是晚上2005年都表现为净CO2排放,整个生长季CO2净排放量为372.56 g CO2·m-2,是一个明显的CO2源。土壤含水量和土壤温度控制着生态系统CO2通量的大小,尤其是在白天,CO2通量和土壤含水量的变化呈现出显著的负相关关系,和土壤温度表现为正相关关系。  相似文献   

5.
湿地由于具有较高的初级生产力以及较低的有机质降解速率而成为缓解全球变暖的潜在有效碳汇.虽然近年来中国湿地生态系统CO2交换过程及其影响机制研究取得了一系列进展,但尚缺乏对数据进行系统性整合分析.基于29篇文献的数据,对中国21个典型湿地植被净生态系统CO2交换(NEE)、生态系统呼吸(Reco)、总初级生产力(GPP)、NEE的光响应参数以及Reco的温度响应参数进行整合分析,并探讨了这些指标对温度与降雨的响应.结果表明: 年尺度上,气温和降雨量对NEE(R2=50%,R2=57% )、GPP(R2=60%,R2=50%)和Reco(R2=44%,R2=50%)均有显著影响(P<0.05).生长季尺度上,NEE (R2=50%)、GPP (R2=36%)和Reco(R2=19%)与气温呈显著相关(P<0.05);同时NEE(R2=33%)和GPP(R2=25%)也与降雨量呈显著相关(P<0.05),但Reco与降雨量的相关关系不显著(P>0.05).生长季降雨量与最大光合速率(Amax)之间呈显著相关 (P<0.01),但与表观量子产率(α)、白天生态系统呼吸速率(Reco,day)无显著相关(P>0.05).生长季气温对α、Amax和Reco, day均无显著影响(P>0.05).生态系统基础呼吸速率(Rref)与降雨量无显著相关(P>0.05),但是生态系统呼吸的温度敏感系数(Q10)与降雨量呈显著的线性负相关(P<0.05),同时气温对Q10(R2=0.35)、Rref(R2=0.46)均产生显著影响(P<0.05).  相似文献   

6.
以青藏高原玛沁地区高寒草甸和沱沱河地区高寒荒漠草原为观测研究站,利用涡动协方差技术获取高寒生态系统水平上的CO2通量以及水和能量通量,通过REddyProc、随机森林(Random Forest, RF)进行了数据后处理,探究了不同下垫面典型环境因子对净生态系统CO2交换量(Net Ecosystem Exchange, NEE)的影响机制。结果表明:1)玛沁高寒草甸在6—7月以吸收为主,表现为碳汇,吸收峰值出现在11:00—12:00(北京时,下同)之间,而在3、4、5、8月以排放为主,表现为碳源,排放峰值出现在21:00—23:00之间;沱沱河高寒荒漠在3—8月以吸收为主,表现为净碳汇,吸收峰值出现在13:00—14:00之间;整个生长季前后(3—8月),玛沁和沱沱河的累计NEE分别为79.50 g C/m2和79.24 g C/m2,都表现为碳汇。2)不同尺度不同下垫面,气象因子对NEE的重要程度不同,小时尺度上,高寒草甸辐射对NEE的重要性最大,高寒荒漠草原蒸散发对NEE的重要性最大;日尺度...  相似文献   

7.
为探究草原生态系统固碳能力,利用锡林浩特国家气候观象台2018—2021年的涡动相关资料分析了锡林浩特草原生态系统CO2通量的变化特征以及环境因子对CO2通量的影响,并对通量源区分布进行了探讨。结果表明:研究区全年盛行西南风,生长季的源区面积大于非生长季,大气稳定条件下的源区面积大于不稳定条件;90%贡献率的源区最大长度接近400 m,与经典法则估算的长度一致。锡林浩特草原净生态系统碳交换量(NEE)具有明显的日变化和季节变化,生长季白天为碳汇,夜间为碳源,非生长季白天和夜间均为弱碳源。2018—2021年,年总NEE分别为-15.59、-46.28、-41.94和-78.14 g C·m-2·a-1,平均值为-45.49 g C·m-2·a-1,表明锡林浩特草原有较强的固碳能力。饱和水汽压差和光合有效辐射有助于草原生态系统吸收大气中CO2;夜间,当温度高于0℃时,气温和土壤温度升高会促进植被呼吸作用释放CO2。  相似文献   

8.
陆面碳循环在气候变化和生态系统碳收支平衡中起到关键作用。水热变化与CO2交换分析对于深刻揭示荒漠生态系统的区域碳循环规律及机制具有重要意义。本研究选取科尔沁沙地典型流动沙丘为对象,利用涡度相关技术和波文比气象观测系统所测的数据分析近地层水热变化及CO2交换特征,探讨了日和季节尺度,以及0~10 m垂直空间尺度下流动沙丘近地层温湿度与CO2交换过程的相互关系。结果表明: 研究区近地表气温垂直变幅在0.4~2 ℃,4—9月,气温随着高度的升高呈减的趋势,其余月份则相反,空气相对湿度季节变幅超过40%;在2018年生长季,沙丘净生态系统碳交换量(NEE)的日均值为-0.02 mg·m-2·s-1,全年水平的NEE日均值为0.003 mg·m-2·s-1,全年整体上表现为碳源;垂直空间尺度上,垂直温、湿度差与NEE拟合均较好,水热影响拐点分别为10%和0.5 ℃,而全年尺度上温度拟合结果相对较好,水热影响拐点分别为17 ℃和65%。在生长季,研究区近地层垂直温差为负,会抑制流动沙丘对大气CO2的吸收,而大气高湿环境则会促进流动沙丘对大气CO2的吸收。不同时间和不同垂直高度上,水热变化与CO2交换关系较密切,对沙丘碳汇和碳源的产生具有一定的影响,且碳收支对温度的敏感性强于相对湿度。  相似文献   

9.
采用涡度相关法,对2011年生长季的黄河三角洲芦苇湿地净生态系统CO2交换(NEE)进行了观测,研究湿地NEE的变化规律及其影响因子.结果表明: 不同月份芦苇湿地的NEE日变化均呈“U”形曲线,CO2最大净吸收率和释放率的日均值分别为(0.44±0.03)和(0.16±0.01) mg CO2·m-2·s-1;芦苇湿地NEE、生态系统呼吸(Reco)、总初级生产力(GPP)的季节变化均呈现生长旺季(7-9月)较高、生长初期(5-6月)和生长末期(10-11月)较低的趋势;Reco和NEE在8月达到峰值,GPP在7月达到峰值.芦苇湿地生态系统的CO2交换受到光合有效辐射(PAR)、土壤温度(Ts)和土壤体积含水量(SWC)的共同影响.白天NEE与PAR呈直角双曲线关系;5 cm深处Ts与夜间生态系统呼吸(Reco,n)呈指数关系,生态系统呼吸的温度敏感性(Q10)为2.30,SWC和Ts是影响芦苇湿地Reco,n的主要因子.在整个生长季,黄河三角洲芦苇湿地生态系统是一个明显的CO2的汇,总净固碳量为780.95 g CO2·m-2.  相似文献   

10.
采用涡度相关法,对2011年生长季的黄河三角洲芦苇湿地净生态系统CO2交换(NEE)进行了观测,研究湿地NEE的变化规律及其影响因子.结果表明: 不同月份芦苇湿地的NEE日变化均呈“U”形曲线,CO2最大净吸收率和释放率的日均值分别为(0.44±0.03)和(0.16±0.01) mg CO2·m-2·s-1;芦苇湿地NEE、生态系统呼吸(Reco)、总初级生产力(GPP)的季节变化均呈现生长旺季(7—9月)较高、生长初期(5—6月)和生长末期(10—11月)较低的趋势;Reco和NEE在8月达到峰值,GPP在7月达到峰值.芦苇湿地生态系统的CO2交换受到光合有效辐射(PAR)、土壤温度(Ts)和土壤体积含水量(SWC)的共同影响.白天NEE与PAR呈直角双曲线关系;5 cm深处Ts与夜间生态系统呼吸(Reco,n)呈指数关系,生态系统呼吸的温度敏感性(Q10)为2.30,SWC和Ts是影响芦苇湿地Reco,n的主要因子.在整个生长季,黄河三角洲芦苇湿地生态系统是一个明显的CO2的汇,总净固碳量为780.95 g CO2·m-2.  相似文献   

11.
温度和水分对科尔沁草甸湿地净生态系统碳交换量的影响   总被引:1,自引:0,他引:1  
基于涡度相关和波文比气象土壤监测系统,研究了2016年科尔沁草甸湿地生态系统生长季5—9月CO2通量的动态变化特征,分析了温度、水分等环境因子与其的响应关系.结果表明:生长季累计净生态系统碳交换量(NEE)为-766.18 g CO2·m-2,总初级生产力(GPP)和生态系统呼吸量(Re)分别为3379.89和2613.71 g CO2·m-2,Re/GPP为77.3%,表现为明显的碳汇.NEE各月平均日变化呈单峰“U”型曲线,其中5—7月和8月中旬表现为吸收CO2,8月后半月和9月表现为释放CO2.日间NEE与光合有效辐射(PAR)呈显著的直角双曲线关系,同时受饱和水汽压差(VPD)、土壤含水量(SWC)和气温(Ta)等环境要素调控.回归关系表明,日间NEE达到最大时,VPD和SWC值分别为1.75 kPa和35.5%,而NEE随Ta增加逐渐增大,当Ta达到最大时,并未对NEE产生抑制作用;夜间NEE随土壤温度(Ts)呈指数趋势上升.在整个生长季,生态系统呼吸的温度敏感性指数(Q10)为2.4,且SWC越高,Q10越小,夜间NEE受Ts和SWC共同调控.  相似文献   

12.
城市住宅区作为城市生态系统重要的组成单元,其碳源汇对城市生态系统碳循环和碳平衡产生重要影响.本文采取案例分析、文献查阅、问卷调查等多种方法,获取关中地区城市住宅区CO2排放(碳源)与吸收(碳汇)数据,并分析其来源及空间分布情况.结果表明: 关中地区住宅区建材生产和改造更新过程CO2排放量最大;且建材类的CO2排放量远大于日常生活资料,仅有40%~52%碳排放发生在住宅区,其余发生在外围,呈现出碳源距离的空间波动性、成分的空间差异性以及圈层与分区分布.仅有9%~17%的碳排放可在住宅区内被吸收,外部空间被动承担大量碳汇功能,并显现为分层递变和空间分异.最后提出了碳源、碳汇空间管理技术和干预对策.
  相似文献   

13.
氮沉降增加将影响草原生态系统固碳, 但如何影响草原生态系统CO2交换目前为止还没有定论。同时, 不同类型和剂量氮素对生态系统CO2交换影响的差异也不明确。选取内蒙古额尔古纳草甸草原, 开展了不同类型氮肥和不同剂量氮素添加条件下生态系统CO2交换的野外测定。实验设置尿素和缓释尿素2种类型氮肥各5个剂量水平(0、5.0、10.0、20.0和50.0 g N·m-2·a-1)。结果显示, 生长季初期及中期降雨量低时, 氮素添加抑制生态系统CO2交换; 而生长季末期降雨量较高时促进生态系统CO2交换。随着氮素添加水平的提高, NEE和GEP均显著增加, 当氮素添加量达到10 g N·m-2·a-1时, NEE和GEP的响应趋于饱和。2种氮肥(尿素和缓释尿素)仅在施氮量为5 g N·m-2·a-1时, 缓释尿素对生态系统CO2交换的促进作用显著大于尿素, 在其它添加剂量时差异不显著。研究结果表明: 氮素是该草甸草原生态系统的重要限制因子, 但氮沉降增加对生态系统CO2交换的影响强烈地受降雨量与降雨季节分配的限制, 不同氮肥(尿素和缓释尿素)对生态系统CO2交换作用存在差异。  相似文献   

14.
温带落叶阔叶林冠层CO2浓度的时空变异   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究温带落叶阔叶林CO2浓度(摩尔分数, [CO2])的时空变化特征, 利用帽儿山通量塔8层[CO2]廓线系统分析了[CO2]的时间动态及垂直梯度, 并结合森林小气候的同步测定数据探讨了影响[CO2]时空变化的因子。结果表明: 帽儿山温带落叶阔叶林的[CO2]及其垂直梯度具有明显的日变化和季节变化。在日尺度上, [CO2]呈“单峰”曲线, 在夜间或日出前后出现最大值, 日出后迅速降低, 在午后达到最低值, 日落时分又开始迅速升高。在季节尺度上, 生长季的[CO2]日变幅明显大于非生长季, 且冬季(1、2和12月)白天呈“V”型, 其他季节白天呈“U”型, 这与白天对流边界层的持续时间随季节的变化趋势一致。在垂直方向上, [CO2]及其日变幅随高度增加而降低, 并且在生长季夜间湍流交换较弱时其垂直梯度最显著; 植被冠层的光合作用改变了生长旺季白天的[CO2]垂直格局, 使冠层高度的[CO2]最低; 休眠季节该垂直梯度大大减弱。近地层日均[CO2]与土壤温度的趋势相似, 呈单峰曲线; 而林冠上[CO2]在5月初和10月各出现一次峰值, 最低值出现在8月初, 与植被光合作用紧密相关。日尺度上[CO2]及其垂直梯度主要受控于大气边界层和生态系统碳代谢过程; 年尺度上近地层[CO2]主要受控于土壤呼吸, 而林冠上的[CO2]则受生态系统光合作用和呼吸作用的共同控制。  相似文献   

15.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

16.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

17.
蒸散发(ET)是生态系统水分循环和能量流动的重要组成部分,准确估算ET及其各组分,对认识生态生理过程对水分平衡和植物水分利用策略的影响具有重要意义。本研究于2019年5月20日至9月15日,利用涡度相关技术和微型蒸渗仪对毛乌素沙地油蒿-杨柴灌丛生态系统ET、蒸发(E)和蒸腾(T)进行测定和估算,量化了油蒿-杨柴灌丛生态系统ET组分,并分析ET及其组分的季节特征及影响因素。结果表明: T为毛乌素沙地油蒿-杨柴灌丛生态系统生长季ET的主要组分,T/ET为53.1%。T/ET值随降水减少而升高,E/ET值随降水减少而减少,蒸散组分分配主要受降水调控。在季节尺度上,E与10 cm深处土壤含水量(SWC10)和太阳净辐射(Rn)呈显著正相关,其中,SWC10E的主要影响因素;TRn和叶面积指数(LAI)的升高而升高,随30 cm处土壤含水量(SWC30)的升高呈先升高后降低的单峰趋势,受到SWC30Rn和LAI的共同影响;水分是ET的主要影响因素。生长季蒸散/降水量(ET/P)为109.2%,5月ET/P为250.5%,表明生长季初期ET耗水部分来自非生长季降水。  相似文献   

18.
用静态箱法于2012年生长季(5~10月)对黄土高原围封草地常见半灌木铁杆蒿(Artemisia gmelinii)灌丛内外土壤呼吸速率和净生态系统CO2交换速率及其主要环境因子进行实地观测,并对草地土壤基本理化性质进行分析,以揭示铁杆蒿灌丛内外碳交换变化规律及其影响因素。结果显示:(1)铁杆蒿灌丛内的土壤呼吸和净生态系统CO2交换的日交换速率均显著高于灌丛外;灌丛内外土壤呼吸速率和净生态系统CO2交换速率的峰值出现时间一致,且灌丛内显著高于灌丛外;土壤呼吸速率的峰值出现在8月份,净生态系统CO2交换速率的峰值出现在9月份。(2)灌丛内外土壤呼吸速率日动态均呈"单峰型"变化趋势,生长季平均值都接近5月份观测值,分别为(5.49±0.18)和(2.93±0.04)g·m-2·d-1;灌丛内外净生态系统CO2交换速率日动态均以"S"型变化趋势为主,在水分亏缺时期表现为微弱的"双峰"型趋势。(3)灌丛内生长季净生态系统CO2交换速率平均值为(-3.86±0.09)g·m-2·d-1,是灌丛外草地(-1.19±0.07)g·m-2·d-1的3.2倍,灌丛内外均表现为碳汇。研究表明,铁杆蒿灌丛存在"肥岛"现象,有助于该区草地生态系统有机碳的积累,土壤水分和土壤温度是影响灌丛内外土壤呼吸速率的主要因素,而灌丛内外净生态系统CO2交换速率主要受土壤水分的影响。  相似文献   

19.
干旱荒漠区不同生活型植物生长对降雨量变化的响应   总被引:2,自引:0,他引:2  
降水是荒漠生态系统过程和功能的最重要限制因子,荒漠生态系统中的植物物种对生长季降雨的变化极端敏感。根据生长季内每次降雨量,进行不同梯度的人工模拟降雨试验(减雨50%、减雨25%、增雨25%、增雨50%、增雨100%),以自然降雨为对照,研究植物生长对降雨量变化的响应。结果表明:生长季降雨量影响植物的生长和初级生产力,不同生活型植物对降雨量变化的响应显著不同;减雨处理减缓了柠条、油蒿新枝生长,但影响不显著;增雨25%未能显著促进柠条、油蒿新枝生长;50%增雨未能促进柠条新枝生长而能促进油蒿的新枝生长;5—7月,增雨100%能显著增加油蒿新枝生长量,仅能增加柠条6—7月生长量;1年生草本植物地上部分生物量随降雨量增加呈线性增加趋势,减雨50%显著降低了草本植物株高,而其他降雨处理对株高影响不显著。  相似文献   

20.
了解山东省草地生态系统碳库现状和碳通量变化规律对于全国尺度草地生态系统碳源/汇核算有着重要的意义。该研究采用野外面上调查取样和固定加强点静态箱法(LI-840红外分析仪联用)相结合的方法, 分析了山东省暖性草丛生态系统的固碳现状、碳通量季节动态以及净生态系统CO2交换(NEE)对各种环境因子的响应。研究结果表明: 山东暖性草丛生态系统平均碳密度为2.74 Mg C·hm -2, 碳密度的构成排序为土壤碳密度(89%) >生物量碳密度(9%) >凋落物碳密度(2%), 山东暖性草丛碳库总储量约为15.88 Tg C; 结缕草(Zoysia japonica)暖性草丛生态系统NEE的季节动态总体表现为夏季低, 冬季高, 非生长季节(11月至次年4月)向外界净排放CO2, 表现为碳源效应; 生长季节(4-9月)则为净吸收CO2 , 表现为碳汇效应, 峰值月份的平均固碳速率在-2.58- -4.46 μmol CO2·m -2·s -1之间; 2012和2013年泰山小流域暖性草丛NEE年平均值分别为-0.43 μmol CO2·m -2·s -1和-0.31 μmol CO2·m -2·s -1, 都表现为碳汇效应; 光合有效辐射(PAR)、大气温度(Ta)、饱和水汽压差(VPD)和土壤10 cm深度温度(Ts)和含水量(W)是结缕草暖性草丛生态系统NEE动态的主要影响因素, 但不同月份NEE动态的影响因素各异, 且因子间存在着互作效应, 主成分分析表明, NEE的季节动态主要受温度、水分和光强等因子控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号