首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
为了研究骨形态发生蛋白15(bmp15)基因的表达和调控特性,通过克隆猪bmp15基因2.2 kb启动子片段,构建pBMP15-EGFP报告载体,实现监测干细胞向类卵母细胞分化的过程。以猪卵巢组织和中国仓鼠卵巢细胞(CHO)、成肌细胞(C2C12)、猪羊水干细胞(pAFSC)为材料,通过RT-PCR、免疫荧光、细胞转染、显微注射检测bmp15组织特异性表达,并且通过单层细胞诱导检测该基因体外示踪类卵母细胞获得过程的能力。RT-PCR结果显示bmp15在猪的卵巢组织中特异表达,在CHO中表达,而在C2C12和pAFSC中不表达。卵巢组织切片免疫荧光检测结果显示bmp15表达于卵泡发育的各个阶段。瞬时转染不同细胞发现启动子只在CHO中有活性,而在C2C12和pAFSC中均无活性。显微注射重组质粒片段结果显示增强绿色荧光蛋白(Enhanced Green Fluorecence Protein,EGFP)在卵母细胞体外成熟18 h启动表达,并能够持续至4-细胞期胚胎。单层细胞诱导结果显示诱导12 d的pAFSC出现携带EGFP的圆形细胞团。说明bmp15具有表达特异性和示踪干细胞诱导分化为类卵母细胞的潜能。  相似文献   

2.
卵泡内环境对猪卵泡卵体外成熟和发育的影响   总被引:7,自引:0,他引:7  
研究卵泡内环境对猪卵母细胞体外成熟、受精及受精卵体外发育的影响。主要结果如下:直径≥5mm、4-4.9mm、3-3.9mm和2-2.9mm的卵泡卵母细胞体外成熟率分别为90.5%、89.7%、85.4%和67.4%,体外受精后,卵母细胞的发育能力随卵泡直径的增大而增强,直径≥5mm和4-4.9mm卵泡卵的2-细胞、3-4-细胞发育率显著高于直径2-2.9mm的卵泡卵(P<0.05或0.01)。体外成熟培养36h、42h和48h,直径2-2.9mm卵泡卵的体外成熟率,体外受精后的卵裂率差异不显著(P>0.05)。在体外成熟培养液中添加5%或15%的不同直径卵泡的卵泡液,各组间卵母细胞的体外成熟率,受精卵的体外发育率均无显著差异,结果表明:卵泡大小对猪卵母细胞体外成熟、受精及受精卵体外发育有重要影响。  相似文献   

3.
目的:研究猪卵泡内环境对卵母细胞体外成熟,受精及受精卵体外发育的影响。结果:直径≥5mm,4-4.9mm,3-3.9mm,2-2.9mm的卵泡内卵母细胞体外成熟率分别为90.5%,89.7%,85.4%和67.4%。体外受精后,受精卵的发育能力随卵泡直径的增大而增强,来自直径≥5mm和4-4.9mm卵泡的受精卵发育到2-细胞,3-4细胞的比率显高于来自直径2-2.9mm的卵泡受精卵(P<0.05或0.01),体外成熟培养36,42,48小时,直径2-2.9mm卵泡卵的体外成熟率,体外受精后的卵裂率差异不显(P>0.05)。在体外成熟培养液中添加5%或15%的不同直径卵泡的卵泡液,各组间卵母细胞的体外成熟率,受精卵的体外发育率均无显差异。结论:卵泡大小对猪卵母细胞体外成熟,受精及受精卵体外发育有重要影响。  相似文献   

4.
谷朝勇  李兰  沈伟 《生物技术通讯》2007,18(6):1025-1029
哺乳动物卵泡卵母细胞发生的研究一直是发育生物学研究的重点之一。简要叙述了哺乳动物卵泡卵母细胞发生的一般过程,重点分析了原始生殖细胞向卵母细胞分化过程中gdf9、c-kti、BMP4及TGF家族关键基因的表达调控对卵母细胞发生的影响,以及卵母细胞与颗粒细胞间的相互调节作用,介绍了卵母细胞体外发生的最新研究进展及面临的难题等,为进一步研究原始生殖细胞向卵母细胞分化以及卵泡生长发育的机制提供了理论基础。  相似文献   

5.
该研究通过免疫组化和QRT-PCR等方法系统分析了Gas6(growth arrest-special gene 6)基因在猪卵泡发生及早期胚胎发育过程中的表达规律,并提出了一种改良猪卵母细胞体外成熟系统的方法。研究结果显示,Gas6基因表达于猪卵巢中的卵母细胞细胞核及其周围的卵丘细胞,在卵母细胞体外成熟及早期胚胎发育过程中始终有表达,且在囊胚中表达最高。Gas6 mRNA在卵母细胞成熟过程中始终存在,但在孤雌激活后迅速消失,直到发育到囊胚时再次出现。在猪卵母细胞体外培养系统中添加不同浓度的Gas6重组蛋白培养卵母细胞,发现添加Gas6重组蛋白对卵母细胞的极体率无显著影响;但是当添加浓度为100 ng/mL时,培养的卵母细胞孤雌激活后分裂率、囊胚率及囊胚细胞数都显著增高。Gas6可能是通过改善卵母细胞细胞质的成熟质量提高卵母细胞的发育潜能,从而获得了更多、更好的胚胎。  相似文献   

6.
G蛋白偶联受体3(G protein-coupled receptor 3,Gpr3)属于G蛋白偶联受体超家族成员,能够维持卵泡卵母细胞减数分裂的前期阻滞,但在卵泡颗粒细胞中的作用不清。该研究利用RNAi技术,以化学合成的siRNA转染体外培养的猪卵泡颗粒细胞,并利用Real-time PCR和Western blot技术检验Gpr3基因的沉默效果;利用MTT(四甲基偶氮唑盐)、流式细胞术和Real-time PCR技术检测沉默Gpr3基因表达对猪卵泡颗粒细胞凋亡以及凋亡相关基因表达的影响。结果显示,Gpr3-siRNA能够有效地抑制猪卵泡颗粒细胞中Gpr3基因mRNA和蛋白的表达(P〈0.01);在沉默Gpr3基因表达后,猪卵泡颗粒细胞的细胞活性由0.419升高至0.586,同时细胞凋亡率由2.67%下降至0.42%,并在显著上调Bcl-2表达的同时,下调了Bax的表达(P〈0.05)。结果表明,沉默Gpr3基因的表达抑制了猪卵泡颗粒细胞的凋亡,其机制可能与调控Bcl-2和Bax表达有关。  相似文献   

7.
体外培养小鼠的窦前卵泡以得到第二次减数分裂中期(MⅡ)卵母细胞,比较体外发育卵母细胞与体内生长的卵母细胞生长分化因子-9(GDF-9)的基因表达量,探讨GDF-9的表达对卵母细胞体外发育成熟的影响。选择体外培养第2天(D2)、D4、D6、D8、D10、D12卵母细胞作为体外发育组;同窝雌性小鼠出生后D12、D14、D16、D18、D20、D22卵母细胞作为体内发育组;半定量逆转录多聚酶链反应技术分别检测两组MⅠ卵母细胞GDF-9基因表达量。结果体外培养小鼠窦前卵泡可以得到MⅡ期卵母细胞,卵泡成活率、窦腔形成率、卵母细胞成熟率分别达到89·5%、51·8%和56·6%。小鼠卵母细胞GDF-9基因表达量随发育时间的改变而发生变化,而体外发育D8—12卵母细胞GDF-9表达量显著低于同期体内发育卵母细胞(P<0·05)。体外发育D8—12卵母细胞GDF-9基因表达量低于同期体内发育的卵母细胞的原因之一可能是其发育潜能较低。  相似文献   

8.
体外培养小鼠的窦前卵泡以得到第二次减数分裂中期(MⅡ)卵母细胞,比较体外发育卵母细胞与体内生长的卵母细胞生长分化因子-9(GDF-9)的基因表达量,探讨GDF-9的表达对卵母细胞体外发育成熟的影响。选择体外培养第2天(D2)、D4、D6、D8、D10、D12卵母细胞作为体外发育组;同窝雌性小鼠出生后D12、D14、D16、D18、D20、D22卵母细胞作为体内发育组;半定量逆转录多聚酶链反应技术分别检测两组MⅠ卵母细胞GDF-9基因表达量。结果体外培养小鼠窦前卵泡可以得到MⅡ期卵母细胞,卵泡成活率、窦腔形成率、卵母细胞成熟率分别达到89.5%、51.8%和56.6%。小鼠卵母细胞GDF-9基因表达量随发育时间的改变而发生变化,而体外发育D8—12卵母细胞GDF-9表达量显著低于同期体内发育卵母细胞(P<0.05)。体外发育D8—12卵母细胞GDF-9基因表达量低于同期体内发育的卵母细胞的原因之一可能是其发育潜能较低。  相似文献   

9.
小鼠作为发育机制的模式动物,其生殖细胞分化与发育的研究一直是发育生物学研究的重点之一。主要综述了小鼠原始生殖细胞的起源、迁移与增殖的机制,以及原始生殖细胞向生殖细胞的分化,卵母细胞与精子的发生与发育机理,讨论了胚胎干细胞向生殖细胞体外诱导分化以及生殖细胞体外培养的应用前景。  相似文献   

10.
目的探讨脱细胞神经移植物诱导大鼠骨髓间充质干细胞分化为施旺细胞样细胞的可行性。方法将分离纯化的SD大鼠骨髓间充质干细胞进行体外培养扩增,行表型鉴定后,取第5代细胞,诱导组采用脱细胞神经移植物匀浆进行诱导,非诱导组加入等量无血清培养基,倒置相差显微镜观察诱导后细胞形态变化,免疫细胞化学染色检测诱导后细胞S-100,神经胶质纤维酸性蛋白(glial fibrillary acidic protein GFAP)的表达情况。结果BMSCs表型鉴定为CD44+、CD54+、CD34-,免疫细胞化学染色GFAP、S-100的阳性表达率分别为为(42±4)%和(64±5)%。结果 脱细胞神经移植物可诱导骨髓间充质干细胞分化为施旺细胞样细胞。  相似文献   

11.
赋予抗TNF-α 单链抗体片段 (TNF-scFv) 对炎症组织的特异性,用一段来自人清蛋白 (HSA) 的柔性连接肽在基因水平上连接TNF-scFv和抗B型纤维连接蛋白 (B-FN) 的额外域B (ED-B) 的scFv L19,构建了抗TNF-α/抗ED-B单链双特异抗体BsDb,其中B-FN为炎症组织中特异表达的抗原。BsDb在毕赤酵母中获得了分泌表达,表达产物经鉴定和纯化制备后,进行了功能分析。结果表明,BsDb保留了其亲本抗体TNF-scFv和L19对抗原的免疫反应性,能够同时结合TNF-α和ED-B,并中和TNF-α的生理作用。而且,BsDb对抗原的亲和力及中和能力与大肠杆菌包涵体来源的亲本抗体相比显著增强。在小鼠佐剂型关节炎 (AIA) 模型中,BsDb能选择性地积累和保留于小鼠的炎症关节,并快速从血浆中清除。说明BsDb兼备炎症组织的特异性和正常组织的低毒性,在类风湿关节炎及其他慢性炎症性疾病的治疗上具有较大潜力。  相似文献   

12.
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20–30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.  相似文献   

13.
Dyce PW  Liu J  Tayade C  Kidder GM  Betts DH  Li J 《PloS one》2011,6(5):e20339
We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP(+). After differentiation, some GFP(+) OLCs reached 40-45 μM and expressed oocyte markers. Flow cytometric analysis revealed that ~ 0.3% of the freshly isolated skin cells were GFP(+). The GFP-positive cells increased to ~ 7% after differentiation, suggesting that the GFP(+) cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP(+) oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis.  相似文献   

14.
15.
Studying germ cell formation and differentiation has traditionally been very difficult due to low cell numbers and their location deep within developing embryos. The availability of a "closed" in vitro based system could prove invaluable for our understanding of gametogenesis. The formation of oocyte-like cells (OLCs) from somatic stem cells, isolated from newborn mouse skin, has been demonstrated and can be visualized in this video protocol. The resulting OLCs express various markers consistent with oocytes such as Oct4 , Vasa , Bmp15, and Scp3. However, they remain unable to undergo maturation or fertilization due to a failure to complete meiosis. This protocol will provide a system that is useful for studying the early stage formation and differentiation of germ cells into more mature gametes. During early differentiation the number of cells expressing Oct4 (potential germ-like cells) reaches ~5%, however currently the formation of OLCs remains relatively inefficient. The protocol is relatively straight forward though special care should be taken to ensure the starting cell population is healthy and at an early passage.  相似文献   

16.
Historically, our understanding of molecular genetic aspects of germ cell development has been limited. Recently, results demonstrated that the derivation of pluripotent stem cells may provide the necessary genetic system to study germ cell development. Here, we characterized an induced pluripotent stem cell (iPSC) line, which can spontaneously differentiate into embryonic bodies (EBs) after 3 days of suspension culture, expressing specific markers of three germ layers. Then, we induced the iPSCs to differentiate into germ cells by culturing adherent EBs in retinoic acid (RA) and porcine follicular fluid (PFF) differentiation medium or seminiferous tubule transplantation. Our results indicated that RA and PFF were beneficial for the derivation of germ cells and oocyte‐like cells from iPSCs, and iPSCs transplantation could make a contribution to repairing the testis of infertile mice. Our study offers an approach for further study on the development and the differentiation of germ cells derived from iPSCs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.

Background

We have previously demonstrated that stem cells isolated from fetal porcine skin have the potential to form oocyte-like cells (OLCs) in vitro. However, primordial germ cells (PGCs), which must also be specified during the stem cell differentiation to give rise to these putative oocytes at more advanced stages of culture, were not systematically characterized. The current study tested the hypothesis that a morphologically distinct population of cells derived from skin stem cells prior to OLC formation corresponds to putative PGCs, which differentiate further into more mature gametes.

Methodology/Principal Findings

When induced to differentiate in an appropriate microenvironment, a subpopulation of morphologically distinct cells, some of which are alkaline phosphatase (AP)-positive, also express Oct4, Fragilis, Stella, Dazl, and Vasa, which are markers indicative of germ cell formation. A known differentially methylated region (DMR) within the H19 gene locus, which is demethylated in oocytes after establishment of the maternal imprint, is hypomethylated in PGC-like cells compared to undifferentiated skin-derived stem cells, suggesting that the putative germ cell population undergoes imprint erasure. Additional evidence supporting the germ cell identity of in vitro-generated PGC-like cells is that, when labeled with a Dazl-GFP reporter, these cells further differentiate into GFP-positive OLCs.

Significance

The ability to generate germ cell precursors from somatic stem cells may provide an in vitro model to study some of the unanswered questions surrounding early germ cell formation.  相似文献   

18.
General belief in reproductive biology is that in most mammals female germ line stem cells are differentiated to primary oocytes during fetal development and oogenesis starts from a pool of primordial follicles after birth. This idea has been challenged previously by using follicle kinetics studies and demonstration of mitotically active germ cells in the postnatal mouse ovary (Johnson et al., 2004; Kerr et al., 2006; Zhang et al., 2008). However, the existence of a population of self-renewing ovarian germ line stem cells in postnatal mammals is still controversial (Eggan et al., 2006; Telfer et al., 2005; Gosden, 2004). Recently, production of offspring from a germ line stem cell line derived from the neonatal mouse ovary was reported (Zou et al., 2009). This report strongly supports the existence of germ line stem cells and their ability to expand in vitro. Recently, using a transgenic mouse model in which GFP is expressed under a germ cell-specific Oct-4 promoter, we isolated and generated multipotent cell lines from male germ line stem cells (Izadyar et al., 2008). Using the same strategy we isolated and derived cell lines from postnatal mouse ovary. Interestingly, ovarian germ line stem cells expanded in the same culture conditions as the male suggesting that they have similar requirements for their self-renewal. After 1 year of culture and many passages, ovarian germ line stem cells maintained their characteristics and telomerase activity, expressed germ cell and stem cell markers and revealed normal karyotype. As standard protocol for differentiation induction, these cells were aggregated and their ability to form embryoid bodies (EBs) was investigated. EBs generated in the presence of growth factors showed classical morphology and expressed specific markers for three germ layers. However, in the absence of growth promoting factors EBs were smaller and large cells with the morphological and molecular characteristics of oocytes were formed. This study shows the existence of a population of germ line stem cell in postnatal mouse ovary with multipotent characteristics.  相似文献   

19.
Hair follicle stem cells play important roles in maintaining homeostasis and skin tissue self-renewal. Transit-amplifying cells represent the transition of cells from hair follicle stem cells into differentiated epidermal cells. Thus far, the signaling pathway and the molecular biological mechanism that regulate the proliferation and differentiation of hair follicle stem cells remain unclear. In this paper, we studied the relationship between β-catenin and c-myc during the process of the differentiation of hair follicle stem cells into transit-amplifying cells. Based on our results, the expression of β-catenin can activate the nuclear gene c-myc and regulate the expression of transit-amplifying cell markers K15, K19, a6-integrin and β1-integrin, indicating that β-catenin is involved in the transformation process from hair follicle stem cells to transit-amplifying cells and suggesting that β-catenin plays an important biological role in the induction of this differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号