首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 117 毫秒
1.
抗菌肽融合表达研究进展   总被引:1,自引:0,他引:1  
抗菌肽抗菌谱广、活性稳定,且具有与抗生素不同的抗菌机制,在抑杀病原微生物的同时不易产生耐药性,因而在食品、饲料、医药等领域具有重要的应用价值。基因工程技术是降低抗菌肽生产成本的主要方式,其中融合表达在提高抗菌肽产量方面起到了重要作用。文中综述了抗菌肽融合表达的国内外研究进展,探讨了部分融合标签用于抗菌肽表达的策略,并对今后的发展提出了自己的看法。  相似文献   

2.
抗菌肽是一类从动植物、微生物体内分离得到的阳离子小分子量肽,具有天然的抗菌活性。它作用迅速,广谱,不易产生耐药性,具有重要的应用价值,近年来成为研究热点。普遍认为异源表达是生产大量抗菌肽的最有效方法。大肠杆菌作为经典的表达宿主,具有生长速度快、遗传背景清晰、有大量可利用的商业表达载体、易操作等优势,现已成为抗菌肽表达的首选宿主。乳酸菌作为世界公认安全的食品级微生物,近年来广泛用于抗菌肽的异源表达。着重阐述了抗菌肽在大肠杆菌、乳酸菌中重组表达的研究进展。  相似文献   

3.
抗菌肽作为一类具有多种生物学功能的小肽,具有分子量小、不含外源成分、不易产生耐药性等特性,成为近年来的研究热点。该文综述了抗菌肽的种类、作用机制及其重组表达系统等方面的研究进展,并对存在的热点问题进行了探讨。  相似文献   

4.
抗菌肽的研究进展   总被引:5,自引:0,他引:5  
祝骥  高飞  易喻  陈建澍  应国清 《生命科学》2008,20(4):605-610
近年来,由于细菌耐药性问题日趋严峻,开发新型抗菌制剂已迫在眉睫。抗菌肽具有相对分,子质量小、对热稳定、抗菌谱广及不同于抗生素的抗菌机制,不产生耐药性,因而具有重要的临床应用价值。本文对天然来源、蛋白质酶解、化学合成及基因工程方法产生的抗菌肽及其研究进展进行了综述。  相似文献   

5.
抗生素的耐药性和动物源性食品中的药物残留问题严重威胁全球公共卫生系统。因此,开发出不易产生耐药性、抗菌活性高的新型抗菌药物迫在眉睫。抗菌肽因其分子量小、抗菌谱广、不易产生耐药性等优点受到科学家们的广泛关注,但天然抗菌肽具有抗菌活性低、溶血活性和细胞毒性等缺陷。随着抗菌肽序列和结构的不断优化,多种具有显著体内外抗菌活性且安全高效的新型抗菌药物被研发出来。猪源抗菌肽PMAP-36是从猪骨髓细胞中分离出来的一种具有典型两亲性α-螺旋结构的高阳离子抗菌肽。本文就国内外关于猪源抗菌肽PMAP-36的序列设计及其结构优化等方面的研究进展进行综述。  相似文献   

6.
抗菌肽是具有抗菌活性的一类短肽,具有分子量低、热稳定、广谱的抗菌、抗病毒及抑制肿瘤的生物活性,是动植物防御体系的一个重要组成部分,在机体抵抗病原的入侵方面起着重要的作用。但实践表明,作为抗生素替代品的抗菌肽的开发并非易事。针对近年来抗菌肽研究的热点,对抗菌肽的临床应用和表达调控进行了简要综述。  相似文献   

7.
抗菌肽作为新一代抗生素的潜在应用价值使其备受关注,大量高纯度的抗菌肽是开展基础及临床实验的关键。天然来源的抗菌肽资源有限、纯化困难,化学合成抗菌肽成本高、活性不稳定,因此通过基因重组表达得到大量抗菌肽是低成本、高效益的方法。目前采用大肠杆菌表达系统获得抗菌肽已成为研究者的首选,通常以形成融合蛋白的方式表达,这不仅可避免抗菌肽对宿主的杀伤作用,也保护了抗菌肽免受蛋白酶降解。文章结合课题组的研究工作,综述了近年来抗菌肽在大肠杆菌中表达的融合载体、融合蛋白的裂解方法及表达条件优化的研究进展。  相似文献   

8.
抗菌肽是一类小分子多肽类物质,由10~50个氨基酸组成,具有广谱的抗菌特性,由于其机制与一般抗生素不同,故不易使病原菌产生耐药性,因此抗菌肽有望被开发成为新一代肽类抗生素。但抗菌肽的稳定性差、溶血毒副作用强、治疗指数低等缺点限制了其进一步发展,所以,近年来对抗菌肽的结构改造已成为研究热点。该文主要从抗菌肽的二级结构、结构改造及抗菌肽机制研究三方面进行了综述,并对抗菌肽在结构改造中存在的问题加以分析,为更好地把握和设计新型抗菌肽奠定基础。  相似文献   

9.
抗菌肽及其临床应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽是生物体在抵抗病原微生物的防御反应过程中产生的一类具有抗微生物活性的小分子多肽。抗菌肽是机体天然免疫系统的重要组成部分,具有广谱的抗革兰氏阳性、阴性菌活性,对真菌、某些有包膜的病毒、寄生虫以及肿瘤细胞也有抑制活性。抗菌肽具有不同于传统抗生素的独特抗菌机制,病原菌不宜对其产生耐药性,有可能成为一种新的抗生素替代品。介绍了抗菌肽的来源与分类、理化特性与生物学活性,并重点阐述其最新的临床应用进展。  相似文献   

10.
抗菌肽的作用机制、生物活性及应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽广泛存在于生物界,是辅助生物机体抵抗外来病原体入侵的重要防御分子。抗菌肽不仅能抑制、杀灭多种细菌,而且具有抗真菌、抗寄生虫、抗病毒、抗肿瘤和免疫调节等生物学活性。抗菌肽的作用机制与传统抗生素不同,不仅具有广谱抗微生物作用,而且不易诱导机体产生耐药性,因此,在治疗临床耐药菌株方面具有极大的开发潜力。  相似文献   

11.
The skins of amphibians secrete small antimicrobial peptides that fight infection and are being explored as potential alternatives to conventional antibiotics. In this study we combined mass spectrometry with cDNA sequencing to examine antimicrobial peptides in skin secretions from the Chinese frog Rana dybowskii. Thirteen peptides having precursor sequences that resemble known antimicrobial peptides from this genus were identified, ten of which were members of previously described peptide families based on their primary structures; i.e., brevinin-1, Japonicin-1, brevinin-2 and temporin. The other three peptides from R. dybowskii, which were named dybowskin-1CDYa, dybowskin-2 CDYa and dybowskin-2CDYb, had different amino acid compositions and little sequence similarity to known antimicrobial peptides. The carboxyl terminus of dybowskin-1CDY lacked amidation and is therefore clearly distinct from temporin peptides, whereas dybowskin-2CDYa and dybowskin-2CDYb consisted of 18 amino acids and were rich in Arg residues. Chemically synthesized peptides corresponding to mature dybowskin-1CDYa and dybowskin-2CDYa had strong antimicrobial activity and caused little hemolysis of human erythrocytes, suggesting they may serve as interesting templates for the development of novel antibiotics.  相似文献   

12.
Mammalian antibiotic peptides   总被引:2,自引:0,他引:2  
The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus creating a strong need to develop new antimicrobial agents. These new antibiotics should possess novel mechanisms of action and different cellular targets compared with existing antimicrobials. Recent discoveries and isolations of so-called animal antibiotics, mostly small cationic peptides, which represent a potent branch of natural immunity, offered the possibility to acquire new and effective antibiotics of this provenance. To this date, more than 500 antibiotic peptides have been distinguished and defined. Their antimicrobial properties present new opportunities for their use as antibiotics or for construction of their more effective derivatives, but much research is still required to pave the way to their practical use. This is a survey of substances forming an armamentarium of natural immunity of mammals.  相似文献   

13.
Anti-infection peptidomics of amphibian skin   总被引:1,自引:0,他引:1  
Peptidomics and genomics analyses were used to study an anti-infection array of peptides of amphibian skin. 372 cDNA sequences of antimicrobial peptides were characterized from a single individual skin of the frog Odorrana grahami that encode 107 novel antimicrobial peptides. This contribution almost triples the number of currently reported amphibian antimicrobial peptides. The peptides could be organized into 30 divergent groups, including 24 novel groups. The diversity in peptide coding cDNA sequences is, to our knowledge, the most extreme yet described for any animal. The patterns of diversification suggest that point mutations as well as insertion, deletion, and "shuffling" of oligonucleotide sequences were responsible for the diversity. The diversity of antimicrobial peptides may have resulted from the diversity of microorganisms. These diverse peptides exhibited both diverse secondary structure and "host defense" properties. Such extreme antimicrobial peptide diversity in a single amphibian species is amazing. This has led us to reconsider the strong capability of innate immunity and molecular genetics of amphibian ecological diversification and doubt the general opinion that 20-30 different antimicrobial peptides can protect an animal because of the relatively wide specificity of the peptide antibiotics. The antimicrobial mechanisms of O. grahami peptides were investigated. They exerted their antimicrobial functions by various means, including forming lamellar mesosome-like structures, peeling off the cell walls, forming pores, and inducing DNA condensation. With respect to the development of antibiotics, these peptides provide potential new templates to explore further.  相似文献   

14.
Amphipathic, alpha-helical antimicrobial peptides   总被引:3,自引:0,他引:3  
Gene-encoded antimicrobial peptides are an important component of host defense in animals ranging from insects to mammals. They do not target specific molecular receptors on the microbial surface, but rather assume amphipathic structures that allow them to interact directly with microbial membranes, which they can rapidly permeabilize. They are thus perceived to be one promising solution to the growing problem of microbial resistance to conventional antibiotics. A particularly abundant and widespread class of antimicrobial peptides are those with amphipathic, alpha-helical domains. Due to their relatively small size and synthetic accessibility, these peptides have been extensively studied and have generated a substantial amount of structure-activity relationship (SAR) data. In this review, alpha-helical antimicrobial peptides are considered from the point of view of six interrelated structural and physicochemical parameters that modulate their activity and specificity: sequence, size, structuring, charge, amphipathicity, and hydrophobicity. It begins by providing an overview of how these vary in peptides from different natural sources. It then analyzes how they relate to the currently accepted model for the mode of action of alpha-helical peptides, and discusses what the numerous SAR studies that have been carried out on these compounds and their analogues can tell us. A comparative analysis of the many alpha-helical, antimicrobial peptide sequences that are now available then provides further information on how these parameters are distributed and interrelated. Finally, the systematic variation of parameters in short model peptides is used to throw light on their role in antimicrobial potency and specificity. The review concludes with some considerations on the potentials and limitations for the development of alpha-helical, antimicrobial peptides as antiinfective agents.  相似文献   

15.
昆虫抗菌肽是由昆虫细胞特定基因编码、由细胞核糖体合成的,具有体液免疫功能的一类碱性多肽,对细菌、真菌、病毒和原虫,甚至癌细胞都具有杀伤作用,有望开发成为新一代的抗菌药物。随着抗菌肽家族的不断扩大,其各方面的研究也日益深入。简要综述了昆虫抗菌肽的种类及结构特点、作用机制、生物活性、构效关系、药物开发情况。  相似文献   

16.
AIMS: The objective of this study was to evaluate the effectiveness of antibiotics and antimicrobial peptides against 10 strains of Xylella fastidiosa. METHODS AND RESULTS: The minimal inhibitory concentration (MIC) of 12 antibiotics and 18 antimicrobial peptides were determined by agar dilution tests and growth inhibition assays. Antibiotics with the lowest MIC for X. fastidiosa strains were gentamicin, tetracycline, ampicillin, kanamycin, and novobiocin, chloramphenicol, and rifampin. Plate growth inhibition assays showed that four of the antimicrobial peptides (Magainin 2, Indolicidin, PGQ, and Dermaseptin) were toxic to all X. fastidiosa strains. CONCLUSION: All X. fastidiosa strains were sensitive to several groups of antibiotics, and minor differences in sensitivity to several antimicrobial peptides were observed among strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that antibiotics and antimicrobial peptides have some activity against the pathogen, X. fastidiosa and may have application in protecting plants from developing Pierce's disease.  相似文献   

17.
The presence and antimicrobial activity of antimicrobial peptides (AMPs) has been widely recognized as an evolutionary preserved part of the innate immune system. Based on evidence in animal models and humans, AMPs are now positioned as novel anti-infective agents. The current study aimed to evaluate the potential antimicrobial activity of ubiquicidin and small synthetic fragments thereof towards methicillin resistant Staphylococcus aureus (MRSA), as a high priority target for novel antibiotics. In vitro killing of MRSA by synthetic peptides derived from the alpha-helix or beta-sheet domains of the human cationic peptide ubiquicidin (UBI 1-59), allowed selection of AMPs for possible treatment of MRSA infections. The strongest antibacterial activity was observed for the entire peptide UBI 1-59 and for synthetic fragments comprising amino acids 31-38. The availability, chemical synthesis opportunities, and size of these small peptides, combined with their strong antimicrobial activity towards MRSA make these compounds promising candidates for antimicrobial therapy and detection of infections in man.  相似文献   

18.
The emergence of pathogenic bacteria resistance to conventional antibiotics calls for an increased focus on the purification and characterization of antimicrobials with new mechanisms of actions. Antimicrobial peptides are promising candidates, because their initial interaction with microbes is through binding to lipids. The interference with such a fundamental cell structure is assumed to hamper resistance development. In the present review we discuss antimicrobial peptides isolated from marine invertebrates, emphasizing the isolation and activity of these natural antibiotics. The marine environment is relatively poorly explored in terms of potential pharmaceuticals, and it contains a tremendous species diversity which evolved in close proximity to microorganisms. As invertebrates rely purely on innate immunity, including antimicrobial peptides, to combat infectious agents, it is believed that immune effectors from these animals are efficient and rapid inhibitors of microbial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号