首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
YF Hu  J Du  R Zhao  Y Xue  F Yang  Q Jin 《Journal of virology》2012,86(19):10901-10902
The coxsackievirus B4 (CVB4) belongs to human enterovirus B species within the family Picornaviridae. Here we report a novel complete genome sequence of a recombinant CVB4 strain, CVB4/GX/10, which was isolated from a patient with a fatal case of hand, foot, and mouth disease in China. The complete genome consists of 7,293 nucleotides, excluding the 3' poly(A) tail, and has an open reading frame that maps between nucleotide positions 742 and 7293 and encodes a 2,183-amino-acid polyprotein. Phylogenetic analysis based on different genome regions reveals that CVB4/GX/10 is closest to a CVB4 strain, EPIHFMD-CLOSE CONTACT-16, in the 5' half (VP4~2B) of the genome, although it is closer to a Chinese CVB5 strain, CVB5/Henan/2010, in the 3' half (2C~3D) of the genome. Furthermore, similar bootscan analysis based on the whole genomes demonstrates that recombination has possibly occurred within the 2C domain and that CVB4/GX/10 is a possible progeny of intertypic recombination of the CVB4 strain EPIHFMD-CLOSE CONTACT-16 and CVB5/Henan/2010 that occurred during their cocirculation and evolution, which is a relatively common phenomenon in enteroviruses.  相似文献   

2.
The emergence of carbapenem-resistant Acinetobacter baumannii, responsible for causing nosocomial infections, has been becoming a significant global health issue. In this article, we report the complete genome sequence of bacteriophage Bϕ-B1251 (YMC/09/02/B1251 ABA BP), which causes lysis of a carbapenem-resistant A. baumannii strain. The bacteriophage belongs to the family Podoviridae and has a double-stranded circular DNA genome with a length of 45,364 bp and a 39.05% G+C content. Genome analysis showed that it had no similarity to other previously reported bacteriophages capable of infecting A. baumannii.  相似文献   

3.
The epidemiology and molecular characteristics of human enterovirus B (HEV-B) associated with hand, foot and mouth disease (HFMD) outbreaks in China are not well known. In the present study, we tested 201 HEV isolates from 233 clinical specimens from patients with severe HFMD during 2010–2011 in Linyi, Shandong, China. Of the 201 isolates, 189 were fully typed and 18 corresponded to HEV-B species (six serotypes CVA9, CVB1, CVB4, Echo 6, Echo 25 and Echo 30) using sensitive semi-nested polymerase chain reaction analysis of VP1 gene sequences. Phylogenetic analysis based on the VP1 region showed that eight E30SD belonged to a novel sub-genogroup D2; E25SD belonged to a novel sub-genogroup D6; E6SD belonged to sub-lineage C6 and five CVB1SD belonged to subgroup 4C; and B4SD belonged sub-lineage D2. The full viral genomes of the CVB1SD, E6SD, E25SD and E30SD isolates were sequenced. Analysis of phylogenetic and similarity plots indicated that E25SD recombined with E25-HN-2, E30FDJS03 and E4AUS250 at noncontiguous P2A–P3D regions, while E30SD, E30FDJ03, E25-HN-2 and E9 DM had shared sequences in discrete regions of P2 and P3. Both E6SD and B1SD shared sequences with E1-HN, B4/GX/10, B5-HN, and A9-Alberta in contiguous regions of most of P2 and P3. Genetic algorithm recombination detection analysis further confirmed the existence of multiple potential recombination points. In conclusion, analysis of the complete genomes of E25SD, E30SD, CVB1SD and E6SD isolated from HFMD patients revealed that they formed novel subgenogroup. Given the prevalence and recombination of these viruses in outbreaks of HFMD, persistent surveillance of HFMD-associated HEV-B pathogens is required to predict potential emerging viruses and related disease outbreaks.  相似文献   

4.
Coxsackievirus B3 (CVB3) is an enterovirus in the family Picornaviridae that is significant to human health, being associated with myocarditis, aseptic meningitis, and pancreatitis, among other conditions. In addition to humans, Sichuan snub-nosed monkeys can be infected and killed by CVB3. Here, we report the first complete genome sequence of a novel coxsackievirus B3 strain, SSM-CVB3, which was isolated from a deceased Sichuan snub-nosed monkey with severe myocarditis. Our findings may aid in understanding the evolutionary characteristics and molecular pathogenesis of this virus.  相似文献   

5.
肠道病毒是我国病毒性脑炎(Viral encephalitis,VE)的主要病原体。本文研究对4株引起VE的天津柯萨奇病毒B组5型(Coxsackievirus B5,CV-B5)分离株进行Illumina MiniSeq高通量测序,并对其全基因组特征、进化及重组特点进行分析。结果提示,4株CV-B5天津分离株的全基因组核苷酸和氨基酸序列同源性分别为84.5%~100.0%和98.1%~100.0%,与国内流行株的全基因组核苷酸序列同源性为83.2%~96.5%,氨基酸序列同源性为96.4%~99.4%。基于全基因组的系统进化分析将CV-B5流行株分为A-D四个基因型,其中天津与国内流行株均属于C基因型。C基因型进一步分为3个进化分支,而天津分离株处在两个不同的分支上。基于基因组各区段序列的系统进化与SimPlot重组分析结果显示,天津分离株15-39N、15-41N与埃可病毒30型(Echovirus 30,E-30)原型株在P3区3B、3C、3D区域均检测到重组信号。本研究有助于了解CV-B5的全基因组特点和重组规律,为相关疾病的防控提供依据。  相似文献   

6.
柯萨奇病毒B组(Coxsackievirus B,CVB)感染细胞时其基因组RNA存在不稳定现象,但产生机制尚不清楚。本研究将柯萨奇病毒B组3型(CVB3)感染细胞后,利用5′ cDNA末端快速扩增技术(5′ rapid amplification of cDNA ends,5′ RACE)扩增并克隆细胞内CVB3基因组片段,并对每条序列及其5′端的二级结构进行分析。结果获得的20条CVB3基因组片段,长度为 2 067~5 547 bp,片段断端主要分布于2Apro和2C编码区。RNAfold分析显示,这些片段多数在5′断点端形成二级茎-环结构。本研究显示,CVB在宿主细胞感染时可形成大量不完整基因组RNA片段,这些片段可在5′断点端形成局部双链结构,提示片段不是随机产生,可能是RNA酶剪切产物。此发现有助于理解CVB基因组不稳定的机制。  相似文献   

7.
Complete genome sequence of a novel porcine enterovirus strain in China   总被引:1,自引:0,他引:1  
Zhang W  Yang S  Shen Q  Ren L  Shan T  Wei J  Cui L  Hua X 《Journal of virology》2012,86(12):7008-7009
The porcine enteroviruses (PEVs) belong to the family Picornaviridae. We report a complete genome sequence of a novel PEV strain that is widely prevalent in pigs at least in central and eastern China. The complete genome consists of 7,390 nucleotides, excluding the 3' poly(A) tail, and has an open reading frame that maps between nucleotide positions 812 and 7318 and encodes a 2,168-amino-acid polyprotein. Phylogenetic analysis based on the 3CD and VP1 regions reveals that this PEV strain belongs to a species of PEV9 but may represent a novel sero-/genotype in CPE group III. We also report the major findings from bootscan analysis based on the whole genomes of PEVs in the present study and those available in GenBank.  相似文献   

8.
Coxsackievirus B3 (CVB3) is a picornavirus which causes myocarditis and pancreatitis and may play a role in type I diabetes. The viral genome is a single 7,400-nucleotide polyadenylated RNA encoding 11 proteins in a single open reading frame. The 5' end of the viral genome contains a highly structured nontranslated region (5'NTR) which folds to form an internal ribosome entry site (IRES) as well as structures responsible for genome replication, both of which are critical for virulence. A structural model of the CVB3 5'NTR, generated primarily by comparative sequence analysis and energy minimization, shows seven domains (I to VII). While this model provides a preliminary basis for structural analysis, the model lacks comprehensive experimental validation. Here we provide experimental evidence from chemical modification analysis to determine the structure of the CVB3 5'NTR. Chemical probing results show that the theoretical model for the CVB3 5'NTR is largely, but not completely, supported experimentally. In combination with our chemical probing data, we have used the RNASTRUCTURE algorithm and sequence comparison of 105 enterovirus sequences to provide evidence for novel secondary and tertiary interactions. A comprehensive examination of secondary structure is discussed, along with new evidence for tertiary interactions. These include a loop E motif in domain III and a long-range pairing interaction that links domain II to domain V. The results of our work provide mechanistic insight into key functional elements in the cloverleaf and IRES, thereby establishing a base of structural information from which to interpret experiments with CVB3 and other picornaviruses.  相似文献   

9.
10.
对2009年云南省肠道病毒71型分离株KMM09和KM186-09进行全基因组序列测序,并与我国及其它国家流行的EV71基因型进行比较和进化分析。KMM09和KM186-09基因组长为7 409bp,编码2 193个氨基酸,VP1系统进化分析显示2009年云南分离株属于C4基因型的C4a亚型。在结构区,与其它基因型相比较,C基因型之间的核苷酸和氨基酸的同源性高于其它基因型;而在非结构区,C4与B基因型和CA16原型株G10同源性高于其它C基因亚型。通过RDP3重组软件和blast比对分析,发现EV71C4基因型与B3基因型,与CA16原型株G10的基因组在非结构区存在重组。EV71全基因组序列的比较和分析,对了解引起我国手足口病暴发或流行C4基因亚型EV71毒株的遗传特性具有重要意义。  相似文献   

11.
12.
RNA-remodeling proteins, including RNA helicases and chaperones, play vital roles in the remodeling of structured RNAs. During viral replication, viruses require RNA-remodeling proteins to facilitate proper folding and/or re-folding the viral RNA elements. Coxsackieviruses B3 (CVB3) and Coxsackieviruses B5 (CVB5), belonging to the genus Enterovirus in the family Picornaviridae, have been reported to cause various infectious diseases such as hand-foot-and-mouth disease, aseptic meningitis, and viral myocarditis. However, little is known about whether CVB3 and CVB5 encode any RNA remodeling proteins. In this study, we showed that 2C proteins of CVB3 and CVB5 contained the conserved SF3 helicase A, B, and C motifs, and functioned not only as RNA helicase that unwound RNA helix bidirectionally in an NTP-dependent manner, but also as RNA chaperone that remodeled structured RNAs and facilitated RNA strand annealing independently of NTP. In addition, we determined that the NTPase activity and RNA helicase activity of 2C proteins of CVB3 and CVB5 were dependent on the presence of divalent metallic ions. Our findings demonstrate that 2C proteins of CVBs possess RNA-remodeling activity and underline the functional importance of 2C protein in the life cycle of CVBs.  相似文献   

13.
Human parechoviruses (HPeVs) belonging to the family Picornaviridae are widely spread pathogens among young children. We report the complete genome sequence of a novel HPeV isolated from the stool sample of a hospitalized child with diarrhea in China. The genome consists of 7,305 nucleotides, excluding the 3′ poly(A) tail, and has an open reading frame that maps between nucleotide positions 675 and 7217 and encodes a 2,180-amino-acid polyprotein. The genome sequence of the virus was sufficiently distinct from the 8 known HPeV types. Phylogenetic analysis based on the complete genome indicated that the HPeV strain represents a new genotype.  相似文献   

14.
Hand, foot, and mouth disease (HFMD) has been one of the most common infectious diseases in Shijiazhuang City, as is the situation in China overall. In the National HFMD surveillance system, the pathogen detection was focused on EV-A71 and CVA16, and therefore, information on the other EVs is very limited. In order to identify the circulating EV serotypes in the HFMD outbreaks in Shijiazhuang City during 2010–2012, 4045 patients presented with HFMD were recruited in the study, and clinical samples were investigated. Typing of EV serotypes was performed using the molecular typing methods, and phylogenetic analyses based on entire VP1 sequences of human enterovirus 71 (EV-A71), coxsackievirus A16 (CVA16), CVA10 and CVB3 was performed. The results revealed that EV-A71 and CVA16 were the 2 most important pathogens but the circulating trends of the 2 viruses showed a shift, the spread of EV-A71 became increasingly weak, whereas the spread of CVA16 became increasingly stronger. CVA10 and CVB3 were the third and fourth most prevalent pathogens, respectively. Co-infection of two viruses at the same time was not found in these samples. Based on entire VP1 region sequences, the phylogenetic analysis revealed that C4a subgenotype EV-A71, B1a and B1b subgenotype CVA16 continued to evolve. The CVA10 strains were assigned to 4 genotypes (A–D), whereas the CVB3 strains were assigned to 5 genotypes (A–E), with clear geographical and temporal-specific distributions. The Shijiazhuang CVA10 sequences belonged to 4 epidemic lineages within genotype C, whereas the Shijiazhuang CVB3 sequences belonged to 2 epidemic lineages within genotype E, which may have the same origins as the strains reported in other part of China. CVA10 and CVB3, 2 pathogens that were previously infrequently detected, were identified as pathogens causing the HFMD outbreaks. This study underscores the need for detailed laboratory-based surveillances of HFMD in mainland China.  相似文献   

15.
16.
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.  相似文献   

17.
This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.  相似文献   

18.
SiRNA抑制柯萨奇B3病毒的复制和表达   总被引:1,自引:0,他引:1  
目的 研究观察体外合成siRNA对培养HELA细胞中柯萨奇B3病毒(Coxsackievirus B3,CVB3)的影响。方法根据siRNA靶序列设计原则,针对编码CVB3病毒聚合酶、VP1蛋白和5’非编码区基因组,特异性地体外合成三对siRNA,同时合成一对与CVB基因组序列无关的阴性对照siRNA。利用脂质体转染进入Hela细胞,用CVB3感染培养HELA细胞,观察转染后HELA细胞病变;采用RT-PCR技术检测感染CVB3各组的病毒RNA;用免疫荧光技术检测各组CVB3蛋白的表达;并用培养细胞上清液再感染HELA细胞观察病毒滴度。结果针对CVB3病毒聚合酶的siR-NA能有效的抑制病毒的复制和CVB3蛋白的表达,并能抑制病毒的再感染;而针对VP1蛋白和5’非编码区的siRNA能部分抑制病毒的复制和CVB3蛋白的表达。结论我们设计合成针对编码CVB3病毒聚合酶基因组的siRNA能有效抑制CVB3病毒复制和表达。  相似文献   

19.
Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5′ untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.  相似文献   

20.
We have previously addressed the question of whether the attenuating mutations of domain V of the Poliovirus IRES were specific for a given genomic context or whether they could be extrapolated to a genomic related virus, the Coxsackievirus B3 (CVB3). Accordingly, we have described that Sabin3-like mutation (U473→C) introduced in the CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. In this study, we assessed the protection provided by the Sabin3-like mutant against CVB3 infection. For this purpose, we analyzed, in vivo, the Sabin3-like phenotype in Swiss mice inoculated with CVB3 and CVB4 E2 prototype strains either by oral or intraperitoneal (i.p) routes and explored the capacity of this mutant to act as a vaccine vector after the challenge. The Sabin3-like RNA was detected by semi-nested PCR in different organs: heart, pancreas and intestine at 10 days post-inoculation with both oral and i.p routes. Additionally, we did not observe any histological alterations in heart and intestine tissues. RNA was detected in the different organs of all mice immunized with the Sabin3-like strain and challenged with either CVB3 or CVB4 E2 by oral route at 7 days post-challenge. In contrast, no histological alteration of heart or pancreas tissues was observed after challenge with both wild-strains. Interestingly, the detection of viral RNA in heart, pancreas and intestine of mice immunized by i.p route was negative at 7 days post-challenge with CVB3 and CVB4 E2, and mice were protected from myocarditis and pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号