首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

2.
The genome sequences of rice (Oryza sativa L.) and Brachypodium distachyon and the comprehensive Triticeae EST (Expressed Sequence Tag) resources provide invaluable information for comparative genomics analysis. The powdery mildew resistance gene, Pm6, which was introgressed into common wheat from Triticum timopheevii, was previously mapped to the wheat chromosome bin of 2BL [fraction length (FL) 0.50–1.00] with limited DNA markers. In this study, we saturated the Pm6 locus in wheat using the collinearity-based markers by extensively exploiting these genomic resources. All wheat ESTs located in the bin 2BL FL 0.50–1.00 and their corresponding orthologous genes on rice chromosome 4 were firstly used to develop STS (Sequence Tagged Site) markers. Those identified markers that flanked the Pm6 locus were then used to identify the collinear regions in the genomes of rice and Brachypodium. Triticeae ESTs with orthologous genes in these collinear regions were further used to develop new conserved markers for the fine mapping of Pm6. Using two F2 populations derived from crosses of IGVI-465 × Prins and IGVI-466 × Prins, we mapped a total of 29 markers to the Pm6 locus. Among them, 14 markers were co-segregated with Pm6 in the IGVI-466/Prins population. Comparative genome analysis showed that the collinear region of the 29 linked markers covers a ~5.6-Mb region in chromosome 5L of Brachypodium and a ~6.0-Mb region in chromosome 4L of rice. The marker order is conserved between rice and Brachypodium, but re-arrangements are present in wheat. Comparative mapping in the two populations showed that two conserved markers (CINAU123 and CINAU127) flanked the Pm6 locus, and an LRR-receptor-like protein kinase cluster was identified in the collinear regions of Brachypodium and rice. This putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm6. Moreover, the newly developed conserved markers closely linked to Pm6 can be used for the marker-assisted selection (MAS) of Pm6 in wheat breeding programs.  相似文献   

3.
Whether the two tetraploid wheat species, the well known Triticum turgidum L. (macaroni wheat, AABB genomes) and the obscure T. timopheevii Zhuk. (AtAtGG), have monophyletic or diphyletic origin from the same or different diploid species presents an interesting evolutionary problem. Moreover, T. timopheevii and its wild form T. araraticum are an important genetic resource for macaroni and bread-wheat improvement. To study these objectives, the substitution and genetic compensation abilities of individual T. timopheevii chromosomes for missing chromosomes of T. aestivum Chinese Spring (AABBDD) were analyzed. Chinese Spring aneuploids (nullisomic-tetrasomics) were crossed with a T. timopheevii x Aegilops tauschii amphiploid to isolate T. timopheevii chromosomes in a monosomic condition. The F1 hybrids were backcrossed one to four times to Chinese Spring aneuploids without selection for the T. timopheevii chromosome of interest. While spontaneous substitutions involving all At- and G-genome chromosomes were identified, the targeted T. timopheevii chromosome was not always recovered. Lines with spontaneous substitutions from T. timopheevii were chosen for further backcrossing. Six T. timopheevii chromosome substitutions were isolated: 6At (6A), 2G (2B), 3G (3B), 4G (4B), 5G (5B) and 6G (6B). The substitution lines had normal morphology and fertility. The 6At of T. timopheevii was involved in a translocation with chromosome 1G, resulting in the transfer of the group-1 gliadin locus to 6At. Chromosome 2G substituted for 2B at a frequency higher than expected and may carry putative homoeoalleles of gametocidal genes present on group-2 chromosomes of several alien species. Our data indicate a common origin for tetraploid wheat species, but from separate hybridization events because of the presence of a different spectrum of intergenomic translocations.  相似文献   

4.

Key message

A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement.

Abstract

To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1U-6U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.  相似文献   

5.
Triticum timopheevii and related species T. militinae (2n=28, AtG) and T. zhukovskyi (2n=42, AmAtG), hybrids T. kiharae, T. miguschovae, the amphidiploid T. timopheevii x T. tauschii (all 2n=42, AtGD), T. fungicidum (ABAtG) and T. timonovum (2n=56, AtAtGG) were analyzed using the C-banding technique. Chromosomes of the Am and At genomes in the karyotype of T. zhukovskyi differed in their C-banding pattern. Partial substitutions of At-genome chromosomes and a complete substitution of the G-genome chromosomes by homoeologous chromosomes of an unidentified tetraploid wheat species with an AB genome composition were found in the T. timonovum karyotype. At- and G-genome chromosomes in the karyotypes of all studied species had similar C-banding patterns and were characterized by a low level of polymorphism. The comparative stability of the At and G genomes is determined by the origin and specifity of cultivation of studied species.  相似文献   

6.
Genetic maps of the homoeologous group-6 chromosomes of bread wheat, Triticum aestivum, have been constructed spanning 103 cM on 6A, 90 cM on 6B and 124 cM on 6D. These maps were transferred to a Chinese Spring (CS) x line #31 cross to locate a dominant powdery mildew resistance gene, Pm12, introgressed into line #31 from Aegilops speltoides. Pm12 was shown to lie on the short arm of translocation chromosome 6BS-6SS.6SL in line #31, but could not be mapped more precisely due to the lack of recombination between the 6S Ae. speltoides segment and chromosome 6B. Possible strategies to reduce the size of the alien segment, which probably encompasses the complete long arm and more than 82% of the short arm of chromosome 6B, are discussed.  相似文献   

7.
On the basis of the reported location of the Pm6 gene, 36 homoeologous group-2 specific probes were selected to detect polymorphism between wheat/Triticum timopheevi Zhuk. Pm6 introgression lines and their recurrent parent "Prins". Two Pm6 introgression lines IGV1-456, IGV1-458 were distinguished from the others. Nineteen long ann specific and six short ann specific probes detected the RFLPs between resistant IGV1456, IGV1-458 and susceptible control "Prins", indicated that the introgressed T. timopheevi 2G chromatin involve beth arms spanning across the centromere between markers Xcdo405 and Xbcd135. Only 6 of the nineteen long ann specific probes and two additional probes-BCD292, CDO678 showed RFLPs between chromosome 2B of "Prins" and IGV1-463. This means that the introgressed T. timopheevi segment in IGV1- 463 with breakpoints between markers Xbcd307 and Xcdo678 is smaller than those detected in IGV1-456 and IGV1-458. Two of the six long arm specific probes PSR934, BCD135 detected polymorphism between IGV1- 464 and "Pr ins", and only one clone BCD135 revealed RFLPs between IGV1-465 and "Pr ins", which indicated that the introgressed segments in these two lines are smaller than those in others. As the introgressed segments in all the introgression lines bear the Pm6 gene, after comparison of the overlaps of the introgressed segments, it might be reasonable to map the gene Pm6 in the region of marker Xbcd135-2BL flanked 2BL.  相似文献   

8.
Aegilops geniculata Roth is an important germplasm resource for the transfer of beneficial genes into common wheat (Triticum aestivum L.). A new disomic addition line NA0973-5-4-1-2-9-1 was developed from the BC1F6 progeny of the cross wheat cv. Chinese Spring (CS)/Ae. geniculata SY159//CS. We characterized this new line by morphological and cytogenetic identification, analysis of functional molecular markers, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and disease resistance evaluation. Cytological observations suggested that NA0973-5-4-1-2-9-1 contained 44 chromosomes and formed 22 bivalents at meiotic metaphase I. The GISH investigations showed that the line contained 42 wheat chromosomes and a pair of Ae. geniculata chromosomes. EST-STS multiple loci markers and PLUG (PCR-based landmark unique gene) markers confirmed that the introduced Ae. geniculata chromosomes belonged to homoeologous group 7. FISH identification suggested that NA0973-5-4-1-2-9-1 possessed an additional pair of 7Mg chromosomes, and at the same time, there were structural differences in a pair of 6D chromosomes between NA0973-5-4-1-2-9-1 and TA7661 (CS-AEGEN DA 7Mg). After inoculation with powdery mildew (Blumeria graminis f. sp. tritici, Bgt) isolates E09, NA0973-5-4-1-2-9-1 exhibited a powdery mildew resistance infection type different from that of TA7661, and we conclude that the powdery mildew resistance of NA0973-5-4-1-2-9-1 originated from its parent Ae. geniculata SY159. Therefore, NA0973-5-4-1-2-9-1 can be used as a donor source for introducing novel disease resistance genes into wheat during breeding programs with the assistance of molecular and cytogenetic markers.  相似文献   

9.
Synthetic hexaploids are bridges for transferring new genes that determine resistance to stress factors from wild-type species to bread wheat. In the present work, the method of developing the spring bread wheat variety Pamyati Maystrenko and the results of its study are described. This variety was obtained using one of the immune lines produced earlier via the hybridization of the spring bread wheat variety Saratovskaya 29 with the synthetic hexaploid T. timopheevii Zhuk. × Ae. tauschii Coss. The C-staining of chromosomes in the Pamyati Maystrenko variety revealed substitutions of 2B and 6B chromosomes by the homeologous chromosomes of the G genome of T. timopheevii and the substitution of chromosome 1D by an orthologous chromosome of Ae. tauschii. It was found that this variety is characterized by resistance to leaf and stem rust, powdery mildew, and loose smut as well as by high grain and bread-making qualities. The role of the alien genetic material introgressed into the bread-wheat genome in the expression of adaptive and economically valuable traits in the Pamyati Maystrenko variety is discussed.  相似文献   

10.
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed.  相似文献   

11.
Pm6 in bread wheat (Triticum aestivum L.), which was transferred from Triticum. timopheevii L., is a gene conferring resistance to the powdery mildew disease caused by Erysiphe graminis f. sp. tritici. Six near-isogenic lines ( NILs ) of Pm6 in a cultivar ’Prins’ background were analyzed to map this gene using restriction fragment length polymorphism (RFLP). Each of the six NILs possessed a T. timopheevii-derived segment, varying in length, and associated with powdery mildew resistance. Lines IGV1–465 (FAO163b/ 7*Prins) and IGV1–467 (Idaed 59B/7*Prins) had the shortest introgressed segments, which were detected only by DNA probes BCD135 and PSR934, respectively. The polymorphic loci detected by both probes were mapped to the long arm of chromosome 2B. Lines IGV1–458 (CI13250/7*Prins) and IGV1–456 (CI12559/8*Prins) contained the longest T. timopheevii segments involving both arms of donor chromosome 2G across the centromere. All these introgressed segments had an overlapping region flanked by the loci xpsr934 and xbcd135 on 2BL. Thus, Pm6 was located in this region since the powdery mildew resistance in all the NILs resulted from the introgressed fragments. Using the F2 mapping population from a cross of IGV1–463 (PI170914/7*Prins)×Prins, Pm6 was shown to be closely linked to the loci xbcd135 and xbcd266 at a genetic distance of 1.6 cM and 4.8 cM, respectively. BCD135 was successfully used in detecting the presence of Pm6 in different genetic backgrounds. Received: 29 June 1999 / Accepted: 6 July 1999  相似文献   

12.
13.
A set of common wheat introgression lines carrying one or two introgressions from Triticum timopheevii was produced by means of marker-assisted backcross selection. The starting material consisted of two BC1F20 (T. aestivum*2/T. timopheevii) lines with resistance to leaf rust, stem rust, powdery mildew, spot blotch, and loose smut and containing multiple 1At, 2At, 2G, 3AtL, 3GL, 4GL, 5AtL, 5GL, and 6G T. timopheevii chromosome fragments. The two lines were crossed with, and backcrossed three times to common wheat cultivar Saratovskaya 29. In total, 275 BC2F1 and BC3F2 plants were characterized by microsatellite markers and in situ hybridization. Molecular and cytological analyses revealed 38 plants with a single introgression from chromosomes 2G, 5GL, or 6G of T. timopheevii and 72 plants, each with two introgressions, among them three plants carrying a T. timopheevii translocation involving the D genome (2DS.2GL). It was observed that the lengths of fragments introgressed from the At genome were more than halved in the BC2 generation, while the lengths of 2G and 5GL introgressed fragments were only slightly reduced after the third backcross. The introgression lines were tested for resistance to the native Puccinia triticina population of the Western Siberian region of Russia. Lines with a single introgressed 5GL region carrying the major leaf rust resistance locus, QLr.icg-5B, were completely resistant. The presence of two minor resistance loci, QLr.icg-2A and QLr.icg-1A, suppressed disease development and reduced the number of urediniospores by up to 25 % but did not lead to a hypersensitive response. The introgression lines therefore constitute promising sources of new resistance to Puccinia triticina.  相似文献   

14.
Kushnir U  Halloran GM 《Genetics》1981,99(3-4):495-512
A number of lines of evidence are advanced for the candidacy of Aegilops sharonensis Eig as the donor of the B genome of wheat. The cytoplasm of Ae. sharonensis is compatible with tetraploid wheat Triticum turgidum dicoccoides, as evidenced by the high level of chromosome pairing and fertility of the amphiploid Ae. sharonensis x T. turgidum dicoccoides. Ae. sharonensis chromosomes exhibit high levels of pairing with those of the B genome of wheat in hybrids with Ph-deficient hexaploid wheat and low levels of homoeologous pairing with T. monococcum chromosomes.——The amphidiploid between Ae. sharonensis and T. monococcum is very similar to T. turgidum dicoccoides in spike, spikelet and grain morphology. The karyotype of Ae. sharonensis resembles more closely that of extrapolated B genome karyotypes of wheat than do the karyotypes of other proposed B-genome donor species of Aegilops. Because of distinctiveness in cytological affinity and karyotype morphology between Ae. sharonensis and Ae. longissima, a separate genome symbol Ssh is proposed for the former species.  相似文献   

15.
小麦抗白粉病基因Pm6的RAPD标记   总被引:15,自引:3,他引:12  
从提莫菲维小麦转移到普通小麦中的小麦白粉病抗性基因Pm6是小麦白粉病(Erysiphe hraminis f sp.tritici)的有效抗性基因。用700个随机引物对Pm6近等基因系进行RAPD分析,发现引物OPV20可在抗病近等基因系中产生大小为2kb的稳定的多态片段。用该引物检测10个其他携Pm6的渐渗系材料,均可稳定扩增出该2kb的多态片段。理一步用OPV20对Pm6F2(IGV1-463  相似文献   

16.
Analyses of RFLPs, isozymes, morphological markers and chromosome pairing were used to isolate 12 Triticum aestivum cv Chinese Spring (genomes A, B, and D)-T. peregrinum (genomes Sv and Uv) disomic chromosome addition lines. The evidence obtained indicates that each of the 12 lines contains an intact pair of T. peregrinum chromosomes. One monosomic addition line, believed to contain an intact 6Sv chromosome, was also isolated. A CS-7Uv chromosome addition line was not obtained. Syntenic relationships in common with the standard Triticeae arrangement were found for five of the seven Sv genome chromosomes. The exceptions were 4Sv and 7Sv. A reciprocal translocation exists between 4S1 and 7S1 in T. longissimum and evidence was obtained that the same translocation exists in T. peregrinum. In contrast, evidence for syntenic relationships in common with the standard Triticeae arrangements were found for only one Uv chromosome of T. peregrinum.; namely, chromosome 2Uv. All other Uv genome chromosomes are involved in at least one translocation, and the same translocations were found in the U genome of T. umbellulatum. Evidence was also obtained indicating that the centromeric regions of 4U and 4Uv are homoeologous to the centromeric regions of Triticeae homoeologous group-6 chromosomes, that the centromeric regions of 6U and 6Uv are homoeologous to the centromeric regions of group-4 chromosomes, and that 4U and 4Uv are more closely related overall to Triticeae homoeologous group-6 chromosomes than they are to group-4 chromosomes.  相似文献   

17.
Three deletion lines (del6V?2S-1, del6V? 2L-1, and del6V?2L-2) of Haynaldia villosa chromosome 6V added to wheat were identified by C-banding and characterized by RFLP analyses. The breakpoints were located at fraction lengths (FL) 0.58 in del6V?2S-1 in the short arm, and FL 0.66 in del6V?2L-1 and FL 0.64 in del6V?2L-2 in the long arm. Thirty-one Triticeae homoeologous group-6 DNA probes were used to map RFLP loci in the deletion lines and the wheat-H. villosa disomic substitution (DS) line 6V?2(6A). Nine probes failed to detect polymorphism between Chinese Spring and DS6V?2(6A). Ten of sixteen polymorphic short-arm loci were not detected in del6V?2S-1. Thus, the loci are located in the deleted distal chromosome region. Six RFLP markers were mapped in the proximal 58% of 6VS. Of 20 DNA markers specific for 6VL, six mapped in the distal 36% of the long arm, and nine mapped in the proximal 64% of 6VL. The breakpoint of the short arm of 6V?2 occurs between Xpsr106 and Xcdo270, and that of the long arm between Xpsr915 and Xmwg934. The powdery mildew resistance gene Pm21 is located on the short arm of chromosome 6V?2. Pm21 is present in del6V?2S-1, and can be further mapped in the proximal 58% of 6V?2S.  相似文献   

18.
 Chromosome pairing at metaphase-I was analyzed in F1 hybrids among T. turgidum (AABB), T. aestivum (AABBDD), and T. timopheevii (AtAtGG) to study the chromosome structure of T. timopheevii relative to durum (T. turgidum) and bread (T. aestivum) wheats. Individual chromosomes and their arms were identified by means of C-banding. Homologous pairing between the A-genome chromosomes was similar in the three hybrid types AAtBG, AAtBGD, and AABBD. However, associations of B-G were less frequent than B-B. Homoeologous associations were also observed, especially in the AAtBGD hybrids. T. timopheevii chromosomes 1At, 2At, 5At, 7At, 2G, 3G, 5G, and 6G do not differ structurally from their counterpart in the A and B genomes. Thus, these three polyploid species inherited translocation 5AL/4AL from the diploid A-genome donor. Chromosome rearrangements that occurred at the tetraploid level were different in T. turgidum and T. timopheevii. Translocation 4AL/7BS and a pericentric inversion of chromosome 4A originated only in the T. turgidum lineage. The two lines of T. timophevii studied carry four different translocations, 6AtS/1GS, 1GS/4GS, 4GS/4AtL, and 4AtL/3AtL, which most likely arose in that sequence. These structural differences support a diphyletic origin of polyploid wheats. Received: 15 June 1998 / Accepted: 19 August 1998  相似文献   

19.
In order to estimate synteny between At and A polyploid wheat genomes belonging to different evolutionary lines (Timopheevi and Emmer), saturation of chromosome maps of Triticum timopheevii At genome by molecular markers has been conducted. Totally, 179 EST-SSR and 48 genomic SSR-markers have been used with the following integration of 13 and 7 markers correspondingly into chromosome maps of At genome. ESTSSR showed higher transferability and lower polymorphism than genomic SSR markers. The chromosome maps designed were compared to maps of homoeologous chromosome group of the T. aestivum A genome. No disturbances of colinearity, i.e., of the order of markers within the chromosome segments on which they had been previously mapped, were observed. According to the quantity assessment of markers amplifying in homoeologous chromosomes, the maximum divergence was detected in two groups (4At/4A and 3At/3A) among the seven chromosomes examined in the A t and A genomes. Comparison of molecular genetic mapping results with the published results of studying meiosis of F1 hybrids and the frequency of chromosomes substitution in introgressive T. aestivum × T. timopheevii lines suggest that individual chromosomes of the At and A genomes evolve differently. Translocations were shown to introduce the major impact on the divergence of 4At/4A and 6At/6A chromosomes, while mutations of the primary DNA structure, on the divergence of homoeologous group 3 chromosomes. The level of reorganization of other chromosomes during the evolution in the At and A genomes was significantly lower.  相似文献   

20.

Background

Triticum araraticum and Triticum timopheevii are tetraploid species of the Timopheevi group. The former includes both winter and spring forms with a predominance of winter forms, whereas T. timopheevii is considered a spring species. In order to clarify the origin of the spring growth habit in T. timopheevii, allelic variability of the VRN-1 gene was investigated in a set of accessions of both tetraploid species, together with the diploid species Ae. speltoides, presumed donor of the G genome to these tetraploids.

Results

The promoter region of the VRN-A1 locus in all studied tetraploid accessions of both T. araraticum and T. timopheevii represents the previously described allele VRN-A1f with a 50 bp deletion near the start codon. Three additional alleles were identified namely, VRN-A1f-del, VRN-A1f-ins and VRN-A1f-del/ins, which contained large mutations in the first (1st) intron of VRN-A1. The first allele, carrying a deletion of 2.7 kb in a central part of intron 1, occurred in a few accessions of T. araraticum and no accessions of T. timopheevii. The VRN-A1f-ins allele, containing the insertion of a 0.4 kb MITE element about 0.4 kb upstream from the start of intron 1, and allele VRN-A1f-del/ins having this insertion coupled with a deletion of 2.7 kb are characteristic only for T. timopheevii. Allelic variation at the VRN-G1 locus includes the previously described allele VRN-G1a (with the insertion of a 0.2 kb MITE in the promoter) found in a few accessions of both tetraploid species. We showed that alleles VRN-A1f-del and VRN-G1a have no association with the spring growth habit, while in all accessions of T. timopheevii this habit was associated with the dominant VRN-A1f-ins and VRN-A1f-del/ins alleles. None of the Ae. speltoides accessions included in this study had changes in the promoter or 1st intron regions of VRN-1 which might confer a spring growth habit. The VRN-1 promoter sequences analyzed herein and downloaded from databases have been used to construct a phylogram to assess the time of divergence of Ae. speltoides in relation to other wheat species.

Conclusions

Among accessions of T. araraticum, the preferentially winter predecessor of T. timopheevii, two large mutations were found in both VRN-A1 and VRN-G1 loci (VRN-A1f-del and VRN-G1a) that were found to have no effect on vernalization requirements. Spring tetraploid T. timopheevii had one VRN-1 allele in common for two species (VRN-G1a), and two that were specific (VRN-A1f-ins, VRN-A1f-del/ins). The latter alleles include mutations in the 1st intron of VRN-A1 and also share a 0.4 kb MITE insertion near the start of intron 1. We suggested that this insertion resulted in a spring growth habit in a progenitor of T. timopheevii which has probably been selected during subsequent domestication. The phylogram constructed on the basis of the VRN-1 promoter sequences confirmed the early divergence (~3.5 MYA) of the ancestor(s) of the B/G genomes from Ae. speltoides.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号