首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
与小麦白粉病抗性基因Pm2紧密连锁PAPD标记的筛选研究   总被引:5,自引:0,他引:5  
刘金元  陶文静 《遗传学报》2000,27(2):139-145
以256个随机引物对含小麦抗白粉病基因Pm2近等基因系进行RAPD分析,发现17个随机引物的扩增产物在抗、感NILs材料间表现多态性,且其中5个引物经4次以上重复,均获相同结果,其多态性标记分别为OPM081600、OPI041700、OPH19900及OPM16850。当以这5个随机引物对14个已知含Pm2基因的抗病材料及9个不含Pm2基因的感病材料进行检测时,只有标记OPI041700在12个  相似文献   

2.
李松涛  钟少斌 《遗传学报》1995,22(2):103-108
RAPD是一种新发展的分子标记技术,本实验利用这种技术对小麦抗白粉病基因Pm4a的近等基因系进行分析。在100个随机引物中找到了3个引物在这对抗白粉病的近等基因系中所扩增出的带型出现差异。并根据理论计算所找到的差异与抗生基因Pm4a连锁的概率是0.7,即3个差异中应有2个标记与抗性基因连锁。  相似文献   

3.
与小麦白粉病抗性基因Pm2紧密连锁RAPD标记的筛选研究   总被引:8,自引:0,他引:8  
以256个随机引物对含小麦抗白粉病基因Pm2近等基因系进行RAPD分析,发现17个随机引物的扩增产物在抗、感NILs材料间表现多态性,且其中5个引物经4次以上重复,均获相同结果,其多态性标记分别为OPM08(1600)、OPI04(1700)、OPH19(1100、OPE09(900)及OPM16(850)。当以这5个随机引物对14个已知含Pm2基因的抗病材料及9个不含Pm2基因的感病材料进行检测时,只有标记OPI04(1700)在12个抗病材料中出现(另两个抗病材料中未检测到),而在9个感病材料中均未出现。进一步用 OPI(04)对102株(Chancellorx Uka/8*Cc)F2分离群体进行分析,估算出标记OPI04(1700)与Pm2基因间的遗传距离为12.2±3.3cM。  相似文献   

4.
一些小麦白粉病抗源抗性基因鉴定分析   总被引:8,自引:2,他引:6  
研究鉴定了我国37份小麦白粉病抗源的抗性基因,19份材料不具有任何抗性基因;6份材料具有来自1BL/1RS易位系的抗性基因Pm8;5份材料具有抗性基因Pm5a;3份分别具有对目前欧洲所有生理小种均抗的抗性基因Pm21、Pm16和Pm12;4份材料具有新的抗性基因。  相似文献   

5.
可转化人工染色体(Transformation competent Artificial Chromosome,TAC)是具有克隆和转移大片段基因能力的新型载体,是植被基因克隆和转化的有效工具。为了克隆泪科抗白粉病基因和其它基因,本研究用TCA载体pYLTAC17构建了带有抗白粉病基因Pm21的小麦=簇毛麦6VS/6AL易位系的基因组DNA文库。该文库包含210万个克隆平均插入征段35lb,相当于  相似文献   

6.
与小麦抗白粉病基因Pm6紧密连锁的分子标记筛选   总被引:8,自引:0,他引:8  
陶文静  刘大钧 《遗传学报》1999,26(6):649-650
以Prins*PI170914/7*PinsF2分离群体对在Prins与其Pm6近等基因系PI170914/7*Prins之间呈现多态性的RFLP标记进行遗传和图,发现8个多态性标中有3个与转称到普通小麦2B染色体长臂上的来源于。  相似文献   

7.
配制了普通小麦与阿拉拉特小麦的正、反交组合20个,杂交结实率为4.9%~33.6%。不同组合杂种F1每个PMC平均的单价体为15.20~18.55,二价体为7.03~9.02,三价体和四价体分别为0.36~1.15和0.01~0.02。通过对杂种后代连续2年成株期混合菌种抗性鉴定和苗期分小种分菌系鉴定表明,从普通小麦中国春与阿拉拉特小麦的杂种F3和F4代已选择到对白粉病高抗~免疫的单株,它们具有42条染色体,在PMC′sMI形成0.00~0.46个单价体,20.77~21.00个二价体,0.00~0.06个四价体,在细胞学上已稳定。与已知白粉病抗性基因比较的抗谱分析表明,阿拉拉特小麦携有主效抗病基因Pm2,在上述的杂交选择过程中,已通过遗传重组将Pm2基因导入到中国春中。  相似文献   

8.
用小麦( Triticum aestivum L.) 第二部分同源群的36 个探针,对携带抗白粉病( Erysiphe graminisf.sp tritici) 基因Pm6 的普通小麦提莫菲维小麦( T.timopheevi Zhuk .) 渐渗系进行检测,通过这些渐渗系与受体亲本“Prins”之间杂交谱带多态性的比较,发现所测出多态性标记位点均位于这5 个渐渗系的2B 染色体上,但其渗入片段的位置与大小有明显区别。IGV1_456 和IGV1_458 被鉴定为2B 染色体从短臂标记Xcdo405 到长臂标记Xbcd135 之间的区域已被提莫菲维2G 染色体区段所代替;而IGV1_463 则在2B 染色体长臂Xbcd307 到Xcdo678 标记之间的区域被提莫菲维渗入成分所代替;IGV1_464 、IGV1_465 2BL染色体上的渗入片段更小,即IGV1_464 在2BL染色体上标记Xpsr934 与Xbcd135 之间的区域有提莫菲维2G 染色质成分渗入,IGV1_465 仅在Xbcd135 附近有更小的外源成分渗入。根据5个渐渗系渗入成分重叠区段比较可把Pm6 定位于2BL染色体上Xbcd135 2BL标记的邻近区域内  相似文献   

9.
亚洲棉GAE6—3A上游序列的分离及其在烟草中的表达   总被引:2,自引:0,他引:2  
根据E6基因保守域设计引物,PCR扩增出亚洲棉(Gassypium arboreum L.)GAE6基因长约400bp片段,序列分析表明该片段与海棉(G.bargbadense)E6基因同源性达96.8%。进一步合成2个反向引物协助进行PCR-96孔板筛库分离到亚洲板棉GAE6-3A克隆。酶切鉴定其插入片段长约8.0kb,序列测定及分析结果表明其上游和约1.5kb,将GAE6-3A上游序列克 含有  相似文献   

10.
用抗白粉病的普通小麦一簇毛麦6VS/6AL易位系与普通小麦品种扬麦5号、普通小麦一簇毛麦6V代换系和中国春6A双端二体以及6V代换系和6A双端二体配制了4个测交组合,分析了这4个杂交组合F1PMC’sMIC-分带的减数分裂构型。在(6VS/6AL易位系×扬麦5号)和(6VS/6AL易位系×6V代换系)的F1PMC’sMI,分别观察到由易位染色体与6A染色体和6V染色体配对形成的具有特定C-分带带型的棒状二价体,杂种中的棒状二价体数目高于各自亲本中的棒状二价体数。在(易位系×C.S.d.d.t6A)F1中,在87.9%的PMC中观察到由易位染色体长臂与6AL端体配对形成的异形二价体(tl”)。而在(6V代换系×C.S.d.d.t6A)F1中,96.68%的PMC具有两个单价端体(t’,t’)。该结果进一步证实易位涉及簇毛麦染色体6VS和小麦染色体6AL,易位断点靠近着丝粒。在减数分裂中,易位染色体的正常配对和分离,保证了6VS上白粉病抗性基因Pm21的正常传递,为这一新抗源在小麦育种中的应用奠定了细胞学基础。  相似文献   

11.
On the basis of the reported location of the Pm6 gene, 36 homoeologous group-2 specific probes were selected to detect polymorphism between wheat/Triticum timopheevi Zhuk. Pm6 introgression lines and their recurrent parent "Prins". Two Pm6 introgression lines IGV1-456, IGV1-458 were distinguished from the others. Nineteen long ann specific and six short ann specific probes detected the RFLPs between resistant IGV1456, IGV1-458 and susceptible control "Prins", indicated that the introgressed T. timopheevi 2G chromatin involve beth arms spanning across the centromere between markers Xcdo405 and Xbcd135. Only 6 of the nineteen long ann specific probes and two additional probes-BCD292, CDO678 showed RFLPs between chromosome 2B of "Prins" and IGV1-463. This means that the introgressed T. timopheevi segment in IGV1- 463 with breakpoints between markers Xbcd307 and Xcdo678 is smaller than those detected in IGV1-456 and IGV1-458. Two of the six long arm specific probes PSR934, BCD135 detected polymorphism between IGV1- 464 and "Pr ins", and only one clone BCD135 revealed RFLPs between IGV1-465 and "Pr ins", which indicated that the introgressed segments in these two lines are smaller than those in others. As the introgressed segments in all the introgression lines bear the Pm6 gene, after comparison of the overlaps of the introgressed segments, it might be reasonable to map the gene Pm6 in the region of marker Xbcd135-2BL flanked 2BL.  相似文献   

12.
Pm6 in bread wheat (Triticum aestivum L.), which was transferred from Triticum. timopheevii L., is a gene conferring resistance to the powdery mildew disease caused by Erysiphe graminis f. sp. tritici. Six near-isogenic lines ( NILs ) of Pm6 in a cultivar ’Prins’ background were analyzed to map this gene using restriction fragment length polymorphism (RFLP). Each of the six NILs possessed a T. timopheevii-derived segment, varying in length, and associated with powdery mildew resistance. Lines IGV1–465 (FAO163b/ 7*Prins) and IGV1–467 (Idaed 59B/7*Prins) had the shortest introgressed segments, which were detected only by DNA probes BCD135 and PSR934, respectively. The polymorphic loci detected by both probes were mapped to the long arm of chromosome 2B. Lines IGV1–458 (CI13250/7*Prins) and IGV1–456 (CI12559/8*Prins) contained the longest T. timopheevii segments involving both arms of donor chromosome 2G across the centromere. All these introgressed segments had an overlapping region flanked by the loci xpsr934 and xbcd135 on 2BL. Thus, Pm6 was located in this region since the powdery mildew resistance in all the NILs resulted from the introgressed fragments. Using the F2 mapping population from a cross of IGV1–463 (PI170914/7*Prins)×Prins, Pm6 was shown to be closely linked to the loci xbcd135 and xbcd266 at a genetic distance of 1.6 cM and 4.8 cM, respectively. BCD135 was successfully used in detecting the presence of Pm6 in different genetic backgrounds. Received: 29 June 1999 / Accepted: 6 July 1999  相似文献   

13.
采用定位于小麦2B染色体上的72对分子标记对含小麦抗白粉病基因Pm6的8份普通小麦(T.aestivum L.)-提莫菲维(T.timopheevii zhuk.)渐渗系材料进行分析, 通过分子标记标图确定8份材料中渗入的提莫菲维小麦染色体片段的大小, 同时结合连锁图谱对这些材料进行了遗传和物理标图。参考本研究所用的分子标记在染色体2B上的定位结果, Pm6基因被位于2B 染色体长臂近末端2BL-6区域, 提莫菲维小麦2G染色体渐渗片断长度由短到长排列顺序为: IGV1-465相似文献   

14.
Near-isogenic lines in conjunction with bulked segregant analysis were used to identify a DNA marker in wheat (Triticum aestivum L.) associated with the H21 gene conferring resistance to biotype L of Hessian fly [Mayetiola destructor (Say)] larvae. Near-isogenic lines were developed by backcross introgression BC3F3:4 (Coker 797 * 4 / Hamlet) and differed by the presence or absence of H21 (on 2RL) derived from Chaupon rye (Secale cereale L.). Bulked DNA samples were prepared from near-isogenic lines and BC3F2 population individuals segregating for reaction to Hessian fly biotype L and screened for random amplified polymorphic DNA markers using 46 10mer primers. Random-amplified polymorphic DNA markers from resistant and susceptible individuals and parental lines were scored and these data were used to identify a 3 kb DNA fragment that was related to the occurrence of H21. This fragment was amplified from DNA isolated from Hamlet, a near-isogenic line carrying 2RL, and bulked DNA from resistant BC3F2 individuals, but not from the recurrent parent Coker 797 or DNA bulks from susceptible BC3F2 plants. Analysis of 111 BC3F2 segregating individuals and BC3F2:3 segregants confirmed the co-segregation of the 3 kb DNA marker with the H21 resistance gene to Hessian fly. Use of this marker could facilitate more rapid screening of plant populations for Hessian fly resistance and monitoring the introgression of H21.  相似文献   

15.
Resistance (R) genes protect plants very effectively from disease, but many of them are rapidly overcome when present in widely grown cultivars. To overcome this lack of durability, strategies that increase host resistance diversity have been proposed. Among them is the use of multilines composed of near-isogenic lines (NILs) containing different disease resistance genes. In contrast to classical R-gene introgression by recurrent backcrossing, a transgenic approach allows the development of lines with identical genetic background, differing only in a single R gene. We have used alleles of the resistance locus Pm3 in wheat, conferring race-specific resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), to develop transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f or Pm3g. In field experiments, all tested transgenic lines were significantly more resistant than their respective nontransformed sister lines. The resistance level of the transgenic Pm3 lines was determined mainly by the frequency of virulence to the particular Pm3 allele in the powdery mildew population, Pm3 expression levels and most likely also allele-specific properties. We created six two-way multilines by mixing seeds of the parental line Bobwhite and transgenic Pm3a, Pm3b and Pm3d lines. The Pm3 multilines were more resistant than their components when tested in the field. This demonstrates that the difference in a single R gene is sufficient to cause host-diversity effects and that multilines of transgenic Pm3 wheat lines represent a promising strategy for an effective and sustainable use of Pm3 alleles.  相似文献   

16.
以家蚕耐氟品种T6和高敏感品种733新为材料,并构建其近等基因系,采用300个随机引物进行RAPD扩增,获得了与家蚕耐氟性有关的一个分子标记S207,并在F2代分离个体中得到验证,证明了此分子标记的可靠性,进而将此标记克隆进T载体pUCm-T中,完成了测序,分析发现此序列是新的未有报道的序列。计划下一步将此RAPD标记转化成SCAR标记,建立分子标记辅助育种技术体系。  相似文献   

17.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

18.
Sequence tagged site (STS) markers have been developed recently to identify resistance genes in wheat. A number of wild relatives have been used to transfer resistance genes into wheat cultivars. Accessions of wild species of Triticeae: Aegilops longissima (4), Ae. speltoides (6), Ae. tauschii (8), Ae. umbellulata (3), Ae. ventricosa (3), Triticum spelta (2), T. timopheevi (3), T. boeoticum (4) and T. monococcum (1), 34 in total, were examined using PCR-STS markers for resistance genes against Puccinia recondita f.sp. tritici (Lr) and Erysiphe graminis (Pm). Additionally, a set of cv. Thatcher near-isogenic lines conferring resistance genes Lr 1, Lr 9, Lr 10, Lr 24, Lr 28, Lr 35 and Lr 37 were examined with the same procedure. Twenty-two accessions were tested using the inoculation test for resistance to Erysiphe graminis, Puccinia recondita, P. striiformis and P. graminis. The most resistant entries were those of Aegilops speltoides and Triticum timopheevi and among T. boeoticum accession #5353. Markers of all mentioned Lr resistance genes were identified in all corresponding cv. Thatcher near-isogenic lines (except Lr 35 gene marker). The following resistance gene markers were identified in wild Triticeae accessions: Lr 1 in two accessions of Ae. tauschii and one accession of Ae. umbellulata, Lr 9 in one accession of Ae. umbellulata, Lr 10 in one accession of T. spelta, Lr 28 in 11 accessions: Ae. speltoides (4), Ae. umbellulata (2), T. spelta (2) and T. timopheevi (3), Lr 37 in 3 accessions of Ae. ventricosa, Pm 1 in all 34 accessions, Pm 2 in 28 accessions, Pm 3 in all 4 accessions of T. boeoticum, 1 accession of T. spelta and 1 of T. timopheevi, and Pm 13 in 5 out of 6 accessions of Ae. speltoides. Reliability and usefulness of STS markers is discussed.  相似文献   

19.
Gene tagging is the basis of marker-assisted selection and map-based cloning. To develop PCR-based markers for Pm4a, a dominant powdery mildew resistance gene of wheat, we surveyed 46 group 2 microsatellite markers between Pm4a near-isogenic line (NIL) CI 14124 and the recurrent parent Chancellor (Cc). One of the markers, gwm356, detected polymorphism and was used for genotyping an F2 population of 85 plants derived from CI 14124 × Cc. Linkage mapping indicated that Xgwm356 was linked to Pm4a at a distance of 4.8 cM. To identify more PCR-based markers for Pm4a, we also converted the restriction fragment length polymorphism marker BCD1231 linked to it into a sequence-tagged site (STS) marker. The STS primer designed based on the end sequences of BCD1231 amplified an approximately 1.6-kb monomorphic band in both parents. Following digestion of the products with the four-cutter enzymes HaeIII and MspI, it was discovered that the band from CI 14124 consisted of at least two products, one of which had a digestion pattern different from the band from Cc. In the F2 population, the cleaved polymorphism revealed by the STS marker between the parents co-segregated with powdery mildew resistance. To design Pm4a-specific PCR markers, the 1.6-kb band from Cc and the fragment associated with Pm4a in CI 14124 were sequenced and compared. Based on these sequences a new PCR marker was identified, which detected a 470-bp product only in the Pm4a-containing lines. These PCR-based markers provide a cost-saving option for marker-assisted selection of Pm4a.Communicated by F. Salamini  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号