首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
为明确塔玛亚历山大藻(Alexandrium tamarense)对东海原甲藻(Prorocentrum donghaiense)生长的化感作用,研究了在N、P限制及正常营养盐条件下(又称富营养)塔玛亚历山大藻无细胞滤液对东海原甲藻生长的影响,并探讨了3种不同营养盐条件下两种藻共培养时的生长状况。结果表明,半连续培养时,营养盐限制下,塔玛亚历山大藻无细胞滤液对东海原甲藻的生长均有一定影响。N限制下,5 d后东海原甲藻藻密度显著低于未加滤液的对照组,藻密度为1.02×107 cells L-1,对照组为1.7×107 cells L-1;P限制下,东海原甲藻藻密度与对照组差异不显著,5 d后藻密度为1.44×107 cells L-1;富营养条件下,东海原甲藻藻密度与对照组无明显区别。共培养时,塔玛亚历山大藻对东海原甲藻生长的抑制作用更为显著,N、P限制下,4 d后东海原甲藻全部死亡,且聚集成团形成沉淀;富营养条件下,仍有少量东海原甲藻存活(藻密度3.3×104 cells L-1)。这表明,塔玛亚历山大藻对东海原甲藻的生长有一定的化感作用。营养盐限制可促进塔玛亚历山大藻化感物质的合成和释放,化感作用是塔玛亚历山大藻抑制东海原甲藻生长的原因之一。  相似文献   

2.
藻类氮的生态辐是指在一定氮浓度范围内藻类能生长和繁殖的浓度范围。它由藻类生长的最佳氮浓度、氮适宜生长范围和氮耐受限度构成。为了定量计算藻类的氮生态幅,在室内培养条件下,研究了低磷(0.48 μmol/L)、中磷(0.97 μmol/L)和高磷(1.45 μmol/L)3种不同磷起始浓度条件下不同氮对塔玛亚历山大藻细胞数和最大比生长率的影响,依据Shelford耐受性定律建立了塔玛亚历山大藻生长的氮耐受性模型,并得到了藻类生长的最佳氮浓度、氮适宜生长范围和氮耐受范围的定量表达。结果表明,在低磷、中磷和高磷条件下,当氮浓度小于适合藻类生长的最佳氮浓度时,藻类细胞数和最大比生长率均随着氮浓度的增大而增大;当氮浓度大于适合藻类生长的最佳氮浓度时,藻类细胞数和最大比生长率均随着氮浓度的增大而减小。藻类生长的氮耐受性模型与谢尔福德耐受定律较为吻合,定量得到在低磷、中磷和高磷培养条件下塔玛亚历山大藻的最佳氮浓度分别为30.36、62.07和77.85 μmol/L;氮适宜生长范围分别为18.30-42.42、37.71-86.43和41.52-114.18 μmol/L;氮耐受限度分别为6.24-54.48、13.35-110.79和5.19-150.51 μmol/L。研究显示不同磷起始浓度条件下,藻类的氮生态幅也不相同。  相似文献   

3.
微小原甲藻的生长及其对锌限制的响应   总被引:6,自引:0,他引:6  
研究了低中高3种Zn2+浓度下,赤潮藻微小原甲藻的生长和生理响应.结果表明,低Zn(1.4pmol·L-1)下,藻细胞的比生长速率和稳定期生物量分别为0.40d-1和51100cell.ml-1.当Zn2+浓度超过24.4pmol·L-1时,提高Zn2+浓度(181.6pmol·L-1),藻细胞的比生长速率没有改变。为0.93d-1,而稳定期生物量则略有下降,但均明显高于低Zn条件下藻细胞的比生长速率和稳定期生物量.Zn限制条件下藻细胞的叶绿素a合成受到影响。藻细胞光合作用需在更高光强下达到饱和.随着Zn2+浓度增加藻细胞光饱和的光合作用速率(Pm)及光合作用效率(a)均明显增大.研究表明,富营养化水体中,高的Zn浓度是一定条件下触发赤潮藻类爆发性增殖的重要因子之一.  相似文献   

4.
模拟自然海水营养盐浓度状况,在N、P浓度分别为10-500μg L-1 N和0.74-74μg L-1 P时,研究N、P双因子限制(N、P浓度同时降低,N:P固定为15:1)及单因子限制(保持N或P为最高浓度,只降低一种营养盐浓度)对有毒赤潮藻塔玛亚历山大藻(Alexandrium tamarense)生长的影响。结果表明,塔玛亚历山大藻细胞能较快进入对数生长期,但N、P双因子限制能明显影响其生长,在N、P浓度分别低于100μg L-1 N和15μg L-1 P时,细胞密度无明显增长;而N或P分别受限时,生长态势明显优于N、P同时受到限制的试验组,而且N、P单因子中度限制对生长影响较小。结果说明塔玛亚历山大藻对单因子营养元素限制较强的适应能力,可使其在常常出现单营养因子限制的自然水体中维持一定生长速率和细胞密度,并有助于滤食该藻的贝类体内麻痹性贝类毒素的积累。  相似文献   

5.
用测定净光合放氧速率的方法研究了温度、光照和pH对锥状斯氏藻(Scrippsiella trochoidea)和塔玛亚历山大藻(Alexandrium tamarense)光合作用的影响.在不同光暗周期(L∶D)条件下培养锥状斯氏藻和塔玛亚历山大藻,研究了光暗周期对生长繁殖速率和生物量的影响.2种藻对温度的变化敏感,适宜的温度范围是17~25℃,最适温度20~22℃,低于10℃和高于30℃不能生长;锥状斯氏藻的光饱和点是400 μmol·m-2·s-1,塔玛亚历山大藻的光饱和点是650 μmol·m-2·s-1, 都属于喜高光强的微藻;2种藻对pH值的变化极其敏感,适宜的pH值范围很小,为7.0~9.0, 最适pH值7.5~8.0, 与其生活的海洋环境一致,pH值高于9.5时, 不能进行有效的光合作用,pH值10.0可致全部细胞死亡;在一定范围内,2种藻的生长速率(μ)和生物量随着光照时间的延长呈比例增加.  相似文献   

6.
为了掌握不同氮源对塔玛亚历山大藻(Alexandrium tamarense)生长和毒性的影响,实验选定硝酸钠、氯化铵、尿素和甘氨酸作为4种氮源,在温度和光强分别为20℃和200μmol photons·m-2·s-1的培养箱中,采用人工海水一次性培养藻细胞,培养基N和P浓度分别以F/20加富,并收集对数期细胞用于斑马鱼胚胎48 h急性毒理实验。结果表明:4种氮源都可以支持细胞生长,但不同氮源培养的藻细胞生长速率不同,表现为铵氮(0.25 d~(-1))硝氮(0.20 d~(-1))尿素=甘氨酸(0.12 d~(-1));4种氮源对细胞色素的含量无显著影响;与对照组(胚胎培养液)相比,在细胞密度为2×10~4cells·mL~(-1)时,塔玛亚历山大藻细胞粗提液对斑马鱼胚胎表现出显著的毒性作用,可造成胚胎的凝固、发育迟缓、卵黄膜破裂、卵黄囊水肿及尾巴弯曲等;当细胞密度增加到8×10~4cells·mL-1时,毒性进一步增加,且4种氮源对毒性的影响出现显著差异,表现为硝氮尿素=甘氨酸铵氮。综上所述,塔玛亚历山大藻的生长和毒性对氮源的响应机制存在差异,但4种氮源都支持生长,因此,在环境变化和水体营养盐结构复杂化的情况下,塔玛亚历山大藻仍可维持生长并持续爆发藻华,对生态环境造成威胁。  相似文献   

7.
谭志军  颜天  周名江  李钧  于仁诚  王云峰 《生态学报》2002,22(10):1635-1639
通过塔玛亚历山大藻 ( Alexandrium tamarense)对黑褐新糠虾 ( N eomysis awatschensis)的急性和慢性毒性作用研究 ,发现塔玛亚历山大藻对黑褐新糠虾的存活、生殖、生长等有不利影响 ,影响程度随塔玛亚历山大藻藻细胞密度的增加而增加。在 96 h急性毒性实验中 ,塔玛亚历山大藻对黑褐新糠虾的半致死密度为 70 0 0 cells/ml,去藻过滤液中糠虾的死亡率为 2 5 %。在 6 2 d的慢性毒性实验中 ,密度为 90 0 cells/ml的塔玛亚历山大藻对黑褐新糠虾的繁殖有严重影响 ,在此影响下的实验组亲虾产幼虾总数只有 2 7尾 ,仅为对照组产幼虾数目的 1 6 .4 % ;其总产幼虾天数、日最高产幼数分别只有对照的 32 %、4 1 % ,其初次产虾日期也推迟了 3d,并出现了 3次生殖中断。塔玛亚历山大藻对黑褐新糠虾亲虾的存活、生长也有一定的影响 ,处在密度为 90 0 cells/ml塔玛亚历山大藻中的黑褐新糠虾亲虾的存活率只有对照的 6 3% ,糠虾亲虾的体长和体重分别为对照组亲虾的 95 .6 %和 81 .9% ,但差异尚不显著 ( P>0 .0 5 )  相似文献   

8.
本文探讨了塔玛亚历山大藻(Alexandrium tamarense)在5种N/P(1∶1、16∶1、50∶1、100∶1和200∶1)条件下适应培养14 d后藻细胞生长和色素的差异。然后将适应培养14 d的藻细胞分为3种辐射处理[可见光(P)、可见光+紫外辐射A(PA)和可见光+紫外辐射A+B(PAB)],探讨藻细胞对紫外辐射响应机制的差异。采用人工紫外灯作为光源,检测3种辐射处理60 min有效光化学效率的变化和快速荧光曲线。结果表明:当N/P为16∶1时,塔玛亚历山大藻的生长最快,叶绿素a(Chl-a)和类胡萝卜素(Caro)的含量可达3.06×10-5和2.10×10-5μg·cell-1;提高或降低N/P都会抑制生长,生长速率与N/P之间符合一元二次方程(R20.98),而色素含量与N/P之间无此规律;经不同N/P培养14 d后,藻细胞接受3种辐射处理60 min,其光化学效率的变化符合一元指数方程(R20.97);与P处理相比,PA处理和PAB处理的光化学效率都显著下降,且光化学效率的降低程度与藻细胞光系统II D1蛋白的修复与损伤速率比值(r/k)存在显著的负线性关系(R20.98);紫外辐射对塔玛亚历山大藻的抑制率受到水体中N/P的影响,其规律符合一元二次方程(R20.95);N/P=16∶1时,r/k最大,光化学效率下降程度和紫外辐射抑制率都最小;因此,N/P=16∶1是藻细胞耐受紫外线辐射的最佳营养盐比例,N/P可通过改变塔玛亚历山大藻细胞D1蛋白的r/k来影响藻细胞对紫外线辐射的响应。  相似文献   

9.
有毒赤潮甲藻塔玛亚历山大藻(香港株Ⅱ)的生长特性研究   总被引:4,自引:0,他引:4  
在室内条件下研究温度、N和P、维生素、抗生素对有毒赤潮甲藻塔玛亚历山大藻(香港株Ⅱ生长的影响。结果表明,塔玛亚历山大藻的适宜生长温度和N、P浓度分别为21-25℃,882-1765μmol/L和18-72μmol/L。复合维生素B的加入有利于塔玛亚历山大藻的生长,而50Uml^-1以上的抗生素则对其有明显的抑制作用。  相似文献   

10.
我国东南沿海亚历山大藻休眠孢囊的分布和萌发研究   总被引:11,自引:0,他引:11  
对4个海域的塔玛亚历山大藻(Alerandrium tamarense)和链状亚历山大藻(A.catenella)休眠孢囊的分布及萌发进行了研究.结果表明,厦门港仅在X1和X2站位有分布,且密度很小(0.4个·g-1);广西只在G2站位有发现,密度较少(2.5个·g-1泥样).闽江口有3个站位有分布,M4站位的4~6cm层密度最大,达到6个·g-1泥样;长江口的孢囊分布广、密度大,DG-26站位的8~10cm层孢囊密度达到了23.2个·g-1泥样.孢囊的分布与沉积物底质类型、沉积速率、海流都有一定的关系.光照对孢囊萌发没有影响,温度升高导致萌发率和存活率均增大,而萌发时间缩短;在低氧条件下(0.01mgO2L-1),孢囊萌发率为0.亚历山大藻孢囊在合适的环境条件下终年都会萌发  相似文献   

11.
Zhao DY  Tian QY  Li LH  Zhang WH 《Annals of botany》2007,100(3):497-503
BACKGROUND AND AIMS: Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. METHODS: Maize seedlings grown in varying concentrations of nitrate for 7 d were used to evaluate the effects on root elongation of a nitric oxide (NO) donor (sodium nitroprusside, SNP), a NO scavenger (methylene blue, MB), a nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine, L-NNA), H(2)O(2), indole-3-acetic acid (IAA) and a nitric reducatse inhibitor (tungstate). The effects of these treatments on endogenous NO levels in maize root apical cells were investigated using a NO-specific fluorescent probe, 4, 5-diaminofluorescein diacetate (DAF-2DA) in association with a confocal microscopy. KEY RESULTS: Elongation of primary roots was negatively dependent on external concentrations of nitrate, and inhibition by high external nitrate was diminished when roots were treated with SNP and IAA. MB and L-NNA inhibited root elongation of plants grown in low-nitrate solution, but they had no effect on elongation of roots grown in high-nitrate solution. Tungstate inhibited root elongation grown in both low- and high-nitrate solutions. Endogenous NO levels in root apices grown in high-nitrate solution were lower than those grown in low-nitrate solution. IAA and SNP markedly enhanced endogenous NO levels in root apices grown in high nitrate, but they had no effect on endogenous NO levels in root apical cells grown in low-nitrate solution. Tungstate induced a greater increase in the endogenous NO levels in root apical cells grown in low-nitrate solution than those grown in high-nitrate solution. CONCLUSIONS: Inhibition of root elongation in maize by high external nitrate is likely to result from a reduction of nitric oxide synthase-dependent endogenous NO levels in maize root apical cells.  相似文献   

12.
Renal brush-border membrane vesicles isolated from rats kept for 6-8 weeks on a low-phosphate diet (0.15% of dry matter) showed a markedly faster Na(+)-dependent phosphate uptake than did membrane vesicles isolated from animals kept on a high-phosphate diet (2% of dry matter). Phosphate-uptake rate by brush-border membrane vesicles isolated from animals on a low-phosphate diet remained significantly increased after acute parathyroidectomy. Dietary adaptation was also observed in animals that had been parathyroidectomized before exposure to the different diets. In animals on the low-phosphate diet parathyrin administration inhibited phosphate uptake by brush-border vesicles only if the animals were repleted with P(i) (5ml of 20mm-NaH(2)PO(4)) 1h before being killed. After acute phosphate loading and parathyrin administration the difference in the transport rate between the two dietary groups remained statistically significant. The results suggest that the adaptation of proximal-tubule phosphate transport to dietary intake of phosphate is reflected in the Na(+)/phosphate co-transport system located in the luminal membrane of the proximal-tubule cell. Since the dietary effects on phosphate transport by brush-border membranes are only partially reversed by acute changes in parathyrin concentration and are also observed in chronically parathyroidectomized animals, the adaptation of the Na(+)/phosphate co-transport system to dietary phosphate intake seems to involve an additional mechanism independent of parathyrin.  相似文献   

13.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

14.
Vitis vinifera cell suspension cultures carried out in shake flasks were closely examined for biomass growth and cell division in relation to carbohydrate, NH(4), NO(3)PO(4), and dissolved oxygen (DO)consumption. After inoculation, the oxygen uptake rate of the cultures measured on-tine was observed to increase continuously to a maximum value of 3.8 mmol O(2)L(-1)h(-1) at day 7 when cell division ceased and dissolved oxygen reached its lowest level of 17% air saturation. During this first phase of growth, the specific oxygen uptake rate remained constant at approximately 0.6 mmol 02 O(2) g(-1) dw h(-1)or approximately 2.2 mumol O(2), (10(6) cells)(-1) h(-1) whereas dry biomass concentration increased exponentially from 1.5 to 6.0 g dw L(-1). Thereafter, dry biomass concentration increased linearly to approximately 14 g dw L(-1) at day 14 following nitrate and carbohydrate uptake. During this second phase of growth, the biomass wet-to-dry weight ratio was found to increase in an inverse relationship with the estimated osmotic pressure of the culture medium. This corresponded to inflection points in the dry and wet biomass concentration and packed cell volume curves. Furthermore, growth and nutrient uptake results suggest that extracellular ammonium or phosphate ion availability may limit cell division. These findings indicate that cell division and biomass production of plant cell cultures may not always be completely associated, which suggests important new avenues to improve their productivity. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
The current experiments explore the role of dopamine in facilitating the acute increase in renal phosphate excretion in response to a high-phosphate diet. Compared with a low-phosphate (0.1%) diet for 24 h, mice fed a high-phosphate (1.2%) diet had significantly higher rates of phosphate excretion in the urine associated with a two- to threefold increase in the dopamine content of the kidney and in the urinary excretion of dopamine. Animals fed a high-phosphate diet had a significant increase in the abundance and activity of renal DOPA (l-dihydroxyphenylalanine) decarboxylase and significant reductions in renalase, monoamine oxidase A, and monoamine oxidase B. The activity of protein kinase A and protein kinase C, markers of activation of renal dopamine receptors, were significantly higher in animals fed a high-phosphate vs. a low-phosphate diet. Treatment of rats with carbidopa, an inhibitor of DOPA decarboxylase, impaired adaptation to a high-phosphate diet. These experiments indicate that the rapid adaptation to a high-phosphate diet involves alterations in key enzymes involved in dopamine synthesis and degradation, resulting in increased renal dopamine content and activation of the signaling cascade used by dopamine to inhibit the renal tubular reabsorption of phosphate.  相似文献   

16.
A high phosphate accumulating bacterium, Arthrobacter globiformis PAB-6, was grown in a chemostat under glucose-limitation. Two different growth patterns at steady state with various dilution rates were obtained. In one case, cells having a coccus shape tended to washout at a low dilution rate, 0.2 (h(-1)). In another, cells with a rod shape grew faster and gave a good steady-state growth at a dilution rate of 0.4. Such a close relationship between growth rate and cell morphology was found both in continuous and batch cultures. The amount of phosphate uptake per cell mass was almost constant irrespective of the dilution rate, but the rate of the uptake was maximum at about the dilution rate of 0.4. A clone of PAB-6 was isolated from the continuous culture with high dilution rate and had maximum specific growth rate of 0.7 in a simple glucosesalt medium.  相似文献   

17.
The relation between nitrate reductase (NR; EC 1.6.6.1) activity, activation state and NR protein in leaves of barley (Hordeum vulgare L.) seedlings was investigated. Maximum NR activity (NRAmax) and NR protein content (Western blotting) were modified by growing plants hydroponically at low (0.3 mM) or high (10 mM) nitrate supply. In addition, plants were kept under short-day (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions in order to manipulate the concentration of nitrate stored in the leaves during the dark phase, and the concentrations of sugars and amino acids accumulated during the light phase, which are potential signalling compounds. Plants were also grown under phosphate deficiency in order to modify their glucose-6-phosphate content. In high-nitrate/long-day conditions, NRAmax and NR protein were almost constant during the whole light period. Low-nitrate/long-day plants had only about 30% of the NRAmax and NR protein of high-nitrate plants. In low-nitrate/long-day plants, NRAmax and NR protein decreased strongly during the second half of the light phase. The decrease was preceded by a strong decrease in the leaf nitrate content. Short daylength generally led to higher nitrate concentrations in leaves. Under short-day/low-nitrate conditions, NRAmax was slightly higher than under long-day conditions and remained almost constant during the day. This correlated with maintenance of higher nitrate concentrations during the short light period. The NR activation state in the light was very similar in high-nitrate and low-nitrate plants, but dark inactivation was twice as high in the high-nitrate plants. Thus, the low NRAmax in low-nitrate/long-day plants was slightly compensated by a higher activation state of NR. Such a partial compensation of a low NRmax by a higher dark activation state was not observed with phosphate-depleted plants. Total leaf concentrations of sugars, of glutamine and glutamate and of glucose-6-phosphate did not correlate with the NR activation state nor with NRAmax. Received: 24 March 1999 / Accepted: 31 May 1999  相似文献   

18.
Surface-immobilized C. roseus cell cultures were grown in a 20-l modified airlift bioreactor operated at 0.51 vvm (kLa approximately 8 h-1) under various gassing regimes [air, 2% (v/v) and 5% CO2]. Extracellular ammonium, phosphate, and nitrate ions as well as carbohydrate uptake and pH value of the medium were monitored together with on-line dissolved oxygen concentration, conductivity of the medium, and carbon dioxide production rate (CPR) of the cultures. Cultures supplemented with 2% CO2 showed higher nitrate (5.0-7.0 mM d-1) and carbohydrate (3.3 g l-1 d-1) uptake rates and biomass production (mu approximately 0.24 d-1, yield approximately 0.33 g dw g CHO-1 and 7.4 g dw L-1) as compared to air (3.6 mM d-1, 2.1 g l-1 d-1; 0.20 d-1, 0.25 g dw g CHO-1 and 5 g dw l-1) and 5% CO2 (2.0-3.6 mM d-1, 2.0 g l-1 d-1; 0.11 d-1, 0.20 g dw g CHO-1 and 5 g dw l-1) cultures and as reported previously for suspension cultures. In addition, air and 5% CO2 cultures displayed incomplete carbohydrate uptake and, more important, phosphate and ammonium ion release into the medium at the end, which was ascribed to loss of viability. This was not observed for 2% CO2 immobilized bioreactor as well as shake flask control suspension cultures, which suggests that sparged C. roseus surface-immobilized cell cultures require 2% CO2 supplementation of the gas phase for both maximum growth and retained viability. The maximum CPRs of all cultures were in the same range (2.1-2.8 mM CO2 l-1 h-1). However, the estimated maximum specific CO2 production rates of 2% CO2 and 5% CO2 immobilized cultures (0.6 mM g dw-1 h-1) were lower than those found for air-sparged immobilized cultures (1.0-1.3 mM g dw-1 h-1). These rates are significantly higher than those reported in the literature for C. roseus cell suspension cultures performed in bioreactors gassed with air (approximately 0.2-0.55 mM g dw-1 h-1).  相似文献   

19.
Two methods for measuring phosphate uptake by phosphate-limited continuous cultures of Monochrysis lutheri Droop are found to yield comparable results. Data from both isotopic tracer (33P) and disappearance experiments strongly support a Michaelis- Menten-type hyperbolic relationship between instantaneous uptake rate and ambient phosphate concentration. The data show no systematic linear trend in either the maximum uptake rate per cell or its associated half saturation constant with pre-conditioning steady state growth rate; a weak non-linear trend with pre-conditioning may, however, be present in the maximum uptake rate with an apparent maximum at intermediate growth rates.  相似文献   

20.
在确定了最适接种量和外植体细胞生理时间的基础上,研究了在不同起始磷浓度下,霍山石斛类原球茎生长、碳、氮消耗和多糖积累的动力学特性。以生长30d的类原球茎为材料,在接种量为100g/L时,类原球茎生长的最佳起始磷浓度为2.5mmol/L,培养36d时,类原球茎鲜重达496.5g/L。动力学分析表明,磷是霍山石斛类原球茎生长的限制性因素,胞内磷的积累水平与细胞生长具有相关性,2.5mmol/L的磷酸盐有利于碳、氮等营养物质的吸收;而多糖积累的最佳起始磷浓度为0.312mmol/L,培养36d时,其产量为2.22g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号