首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   26篇
  国内免费   42篇
  2023年   6篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   6篇
  2015年   10篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   5篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   9篇
  2006年   14篇
  2005年   12篇
  2004年   6篇
  2003年   13篇
  2002年   5篇
  2001年   4篇
  2000年   8篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   7篇
  1986年   4篇
  1984年   4篇
  1982年   1篇
排序方式: 共有225条查询结果,搜索用时 31 毫秒
1.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   
2.
Abstract A current explanation of the mechanism of flooding injury to roots suggests that oxygen deficiency depresses the supply of respirable carbohydrates sufficiently to inhibit fermentation. However, even though it has been shown that phloem transport of assimilate is sharply reduced to anaerobic roots, inhibition of assimilate metabolism has also been suggested to be an important factor. This study examines these hypotheses by relating assimilate supply and metabolic activity in anoxic roots of alfalfa (Medicago sativa L.), a flood-intolerant species, and birdsfoot trefoil (Lotus corniculatus L.), a flood-tolerant plant. Roots were made anoxic (severe O2 deficiency) for 2, 4 or 6 d and shoots were labelled with 14CO2. Assimilate transport to the roots and metabolism to structural components were significantly decreased in both species in response to anoxia. Trefoil exhibited significantly greater 14C incorporation into the residue fraction at 4 d anoxia than did alfalfa, and this was consistent with the greater flooding tolerance of trefoil. When assimilate supply to O2-deficient roots was decreased by shoot shading, shoot fresh weight was reduced by both anoxia and light treatments. Root-soluble sugars were significantly decreased by shading but were greatly increased in response to anoxia. Root starch concentration also increased under anoxia. Root K+ concentration was reduced by anoxia only. The energy status (ATP/ADP) of roots was significantly decreased by shading; however, anoxia reduced the energy status only in unshaded plants. The data indicate that carbohydrate supply to anaerobic roots does not appear to be a limiting factor in the metabolic response of alfalfa roots. Alternatively, metabolism of assimilate in anoxic roots may be an important determinant of survival.  相似文献   
3.
Emergence and growth of barley was severely decreased by short periods (less than 24 hours) of pre-emergence waterlogging at 20°C. The extent of damage depended on a combination of duration of waterlogging, soil water potential and aggregate size. Potentials of less than—4kPa prevented loss of plants developing in aggregates of less than 2 mm diameter after a transitory period of waterlogging although some shoot and root damage occurred. By comparison seeds growing in soil consisting of aggregates greater than 2 mm in diameter were not damaged by transitory waterlogging even when drainage only occurred at−0.8kPa. The severity of damage increased with the period of waterlogging. A criterion obtained as the product of mean size grade and water potential gave a single value (−4NM−1) below which emergence was satisfactory. Waterlogging halfway through germination gave more severe damage than near sowing date or near emergence.  相似文献   
4.
Water content, peroxidase activity and isoperoxidases, phenylalanine ammonia-lyase activity and phenolic content were comparatively analyzed in tissues of normal and vitreous plants cultured in vitro. The release of ethylene in flask atmospheres by normal and vitrifying plants was also measured. On the basis of the results, it is hypothesized that vitrification results from a burst of ethylene controlled by the peroxidase-IAA-oxidase system. An initiating stress (e.g. excess of cytokinins or of NH4+ ions) would mediate the enhancement of the activity of soluble and membrane-bound peroxidases through a rapid modification of the phenolic level. The excess of ethylene in the atmosphere of stressed plants would retroinhibit its own biosynthesis and as a consequence decrease the activities of PAL and acidic peroxidases, thus hindering lignification processes. A parallel decrease in cellulose synthesis due to a diverted conversion of sugars to amino acids is expected (from data in the literature). Deficiency of both cellulose and lignin would allow more water uptake due to reduced wall pressure and bring about the hyperhydric malformations.  相似文献   
5.
6.
I analyzed the rates of net N mineralization and nitrification of soils from seven sites in a Hawaiian wet montane forest. The sites differ in age, ranging from 400 to 4,100,000 yr, but are comparable in other variables (all at 1200 miasl with 4000 mm or more mean annual rainfall), and the chronosequence simulated a development of soils from basaltic lava. Soils were incubated for 20 days at 17.5 °C, which is nearly equivalent to a mean field air temperature of the sites, and at an elevated temperature of 25.5 °C under three treatments: 1) field-wet without amendments, 2) air dried to a permanent wilting point, and 3) fertilized with phosphate (NaH2PO4) at the rate of 50 g P per g dry soil. Both mineralization and nitrification rates varied significantly among the sites at the field temperature (p<.00001). Fractions of the mineralized organic matter (indexed by the N produced per g organic C) increased sharply from the youngest to the 5000-yr site before declining abruptly to a near constant value from the 9000 to the 1,400,000-yr sites. Total organic C in the top soils (<15 cm deep) increased almost linearly with age across the sites. Consequently, net NH4- and NO3-N produced on an area basis (g m-2 20 d-1) increased sharply from 0.2 in the youngest site to 1.2 in the 5000-yr site, then both became depressed once but steadily increased again. The fraction of organic matter mineralized, and the net N turnover rates were outstandingly high in the oldest site where a large amount of organic matter was observed; the topsoil organic matter which was used in this analysis appeared to be highly labile, whereas the subsurface organic matter could be relatively recalcitrant. As suggested by earlier workers, the initial increase in N turnover seemed to correspond to the increasing quantity of N in the soils through atmospheric deposition and biological fixation. The later decline in fraction of organic matter mineralized seemed to relate to increasing soil C/N ratios, increasingly recalcitrant organic matter, and poorer soil drainage with age. The elevated temperature treatment produced significantly higher amounts of N mineralization, except for the youngest site where N was most limiting, and for two sites where soil waterlogging might be severe. P fertilization invariably resulted in slower N turnovers, suggesting that soil microbes responded to added P causing N immobilization. The youngest site did not significantly respond to added P. The magnitude of immobilization was higher in older than in younger soils, suggesting that P more strongly limits microbial populations in the older soils.  相似文献   
7.
渍水对冬小麦生长的危害及其生理效应   总被引:7,自引:0,他引:7  
小麦受渍后叶片的光合和蒸腾速率迅速下降,而后则显微弱的回升趋势。渍害不仅削弱小麦光合产物的积累,并且改变光合产物在地上部分和根系中的分配比例;植株根/冠比下降,而黄叶的发展与根/冠比的变化呈显著负相关;渍害改变小麦的发育进程,尤其是后期渍害明显促使小麦早衰。认为清水使叶片光合速率降低、光合有效面积损失和衰老加速,从而危害小麦的生长。  相似文献   
8.
大叶杨(Populus lasiocarpa)是中国特有的杨属物种,干旱和水淹是影响大叶杨生长和分布范围的两个关键因子。AP2/ERF转录因子家族在植物响应非生物胁迫中发挥重要作用。本研究采用转录组测序、生物信息学分析手段并结合分子实验验证初步鉴定了参与大叶杨干旱和水淹胁迫响应的关键基因。研究结果显示:(1)在大叶杨中分别鉴定到3,986/385个响应干旱/水淹胁迫的差异表达基因,其中包括237个同时响应干旱和水淹胁迫的差异表达基因。(2)在大叶杨中共鉴定到205个AP2/ERF家族成员,系统发育分析表明其在大叶杨中主要分为5个亚家族,并显著富集于差异表达基因中。(3)筛选部分胁迫前后差异表达的PlAP2/ERF基因进行qRT-PCR实验,经证实这些基因在大叶杨受到干旱/水淹胁迫时均可被诱导表达。综上,大叶杨在水淹胁迫下的差异表达基因数量明显少于干旱胁迫,AP2/ERF基因家族的部分基因参与到大叶杨干旱/水淹胁迫的应激表达过程。  相似文献   
9.
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate. During waterlogging soil amino acids increased, particularly γ-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) 15N-enriched (0.3–4.3‰) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in 15N (-6.3 to -1.8‰). Lignotubers and roots had δ15N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in 15N (0.1–2.4‰). The 515N signatures of δ15Ntotal soil N and δ15Nsoil NH4+ were in the range 3.7–4.5‰, whereas δ15Nsoil NO3? was significantly (P < 0.05) more enriched in 15N (9.2–9.8‰). It is proposed that there is discrimination against 15N during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.  相似文献   
10.
Increasing land salinization in Australia is predicted to lead to severe declines in species diversity in affected areas, and perhaps significant numbers of species extinctions. Much of the diversity that will be lost consists of understorey and mid-storey species, yet the overwhelming majority of research has focussed on salinity tolerance in tree species. We investigated how the presence of a shallow, saline water table affected the understorey species composition, species richness and species diversity in two remnant Eucalyptus wandoo Blakely woodlands in the Western Australian wheatbelt. Species richness and species diversity were significantly lower in areas with a shallow water table at elevations < 0.5 m above the lowest local elevation, compared with both higher elevations and with areas of low elevation without a shallow water table. Species composition (Bray-Curtis similarities) was also significantly different in low elevation, saline areas. At one site, saline areas were colonized by native and alien species that were not present in the surrounding vegetation, yet the community that has developed does not contain either the species or structural diversity of the surrounding system. At the other site, no colonisation of saline areas by new species occurred. Even though small differences in elevation (< 0.5 m) at our study sites were important in moderating the impacts of salinity in areas with a shallow water table, the loss of species diversity, species richness and structural complexity in low-lying elevations indicated that the ecological risk from secondary salinity to species associated only with drainage lines, seasonally wet flats and other low-lying areas is severe. The priority is to identify those vegetation communities that are restricted to only low relative elevations within the landscape and that only occur in remnants predicted to be at a high risk of developing a shallow and saline water table.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号