首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  完全免费   8篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有57条查询结果,搜索用时 124 毫秒
1.
2.
3.
4.
We explore the issues relevant to those types of ecosystems containing new combinations of species that arise through human action, environmental change, and the impacts of the deliberate and inadvertent introduction of species from other regions. Novel ecosystems (also termed 'emerging ecosystems') result when species occur in combinations and relative abundances that have not occurred previously within a given biome. Key characteristics are novelty, in the form of new species combinations and the potential for changes in ecosystem functioning, and human agency, in that these ecosystems are the result of deliberate or inadvertent human action. As more of the Earth becomes transformed by human actions, novel ecosystems increase in importance, but are relatively little studied. Either the degradation or invasion of native or 'wild' ecosystems or the abandonment of intensively managed systems can result in the formation of these novel systems. Important considerations are whether these new systems are persistent and what values they may have. It is likely that it may be very difficult or costly to return such systems to their previous state, and hence consideration needs to be given to developing appropriate management goals and approaches.  相似文献
5.
6.
7.
Restoration ecology has made significant advances in the past few decades and stands to make significant contributions both to the practical repair of damaged ecosystems and the development of broader ecological ideas. I highlighted four main areas where progress in research can assist with this. First, we need to enhance the translation of recent advances in our understanding of ecosystem and landscape dynamics into the conceptual and practical frameworks for restoration. Second, we need to promote the development of an ability to correctly diagnose ecosystem damage, identify restoration thresholds, and develop corrective methodologies that aim to overcome such thresholds. This involves understanding which system characteristics are important in determining ecosystem recovery in a range of ecosystem types, and to what extent restoration measures need to overcome threshold and hysteresis effects. A third key requirement is to determine what realistic goals for restoration are based on the ecological realities of today and how these will change in the future, given ongoing changes in climate and land use. Finally, there is a need for a synthetic approach which draws together the ecological and social aspects of the issues surrounding restoration and the setting of restoration goals.  相似文献
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号