首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
  国内免费   5篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
排序方式: 共有61条查询结果,搜索用时 93 毫秒
1.
A. Limami  T. Lamaze 《Plant and Soil》1991,138(1):115-121
The lower part (4 cm) of the witloof chicory tap-root (15 cm) was immersed in a complete nutrient solution for 21 days, in the darkness at 18°C and at high RH. This process of forcing which leads to the emergence of an etiolated bud (chicon) was associated with a decrease in root dry weight. Although the amount of calcium in the root and the root cationic exchange capacity remained constant during forcing, the net uptake of calcium, negligible at the onset of forcing, progressively increased to a rate after ten days of 45 mol day–1. Absorption of 45Ca remained at a constant high rate, while the initially low upward migration of 45Ca within the root and the chicon accelerated markedly. This upward migration was associated with a progressive decline in the release of newly absorbed 45Ca. The data support the hypothesis that calcium acquisition by witloof chicory root is predominantly determined by calcium efflux. As the forcing progressed, the influx remained almost constant while a large decrease in the efflux led to a net uptake of calcium. Upward translocation was probably linked to the formation of new negative exchange sites within the growing chicon. The hypothesis that calcium movement occurred along a preferential pathway (xylem vessels) or involved a mass movement through the root is discussed.  相似文献   
2.
3.
Aims: To evaluate the colonization process of sugarcane plantlets and hydroponically grown rice seedlings by Gluconacetobacter diazotrophicus strain PAL5 marked with the gusA and gfp reporter genes. Methods and Results: Sugarcane plantlets inoculated in vitro with PAL5 carrying the gfp::gusA plasmid pHRGFPGUS did not present green fluorescence, but β‐glucuronidase (GUS)‐stained bacteria could be observed inside sugarcane roots. To complement this existing inoculation methodology for micropropagated sugarcane with a more rapid colonization assay, we employed hydroponically grown gnotobiotic rice seedlings to study PAL5–plant interaction. PAL5 could be isolated from the root surface (108 CFU g?1) and from surface‐disinfected root and stem tissues (104 CFU g?1) of inoculated plants, suggesting that PAL5 colonized the internal plant tissues. Light microscopy confirmed the presence of bacteria inside the root tissue. After inoculation of rice plantlets with PAL5 marked with the gfp plasmid pHRGFPTC, bright green fluorescent bacteria could be seen colonizing the rice root surface, mainly at the sites of lateral root emergence, at root caps and on root hairs. Conclusion: The plasmids pHRGFPGUS and pHRGFPTC are valid tools to mark PAL5 and monitor the colonization of micropropagated sugarcane and hydroponic rice seedlings. Significance and Impact of the Study: These tools are of use to: (i) study PAL5 mutants affected in bacteria–plant interactions, (ii) monitor plant colonization in real time and (iii) distinguish PAL5 from other bacteria during the study of mixed inoculants.  相似文献   
4.
Ferulic acid (FA) is released by living roots and by decaying plant material and is involved in chemical interactions between plants. Effects of FA on plant growth and root development of lettuce (Lactuca sativa L. cv. Grand Rapids) cultivated in axenic nutrient solution were studied in two factorial experiments. Root and shoot growth was impeded when 200 M trans-FA was added to the nutrient solution and the light intensity was in the range of 250–380 mol m-2 s-1. Root growth showed a stronger response to FA than did shoot growth. At 200 M, FA strongly inhibited root hair formation and reduced mean lengths of primary, secondary and tertiary roots, but stimulated primary and secondary root branching. Both isomerization to the cis isomer and the presence of the plant reduced the concentration of trans-FA in the nutrient solution during the two weeks exposure period. A third experiment was conducted to assess the influence of irradiance on the phytotoxicity of FA. At a light intensity of 489 mol m-2 s-1, or in the presence of microorganisms, the concentration of FA in the nutrient solution was lowered and the phytotoxic effects were reduced.  相似文献   
5.
We developed a hydroponic cultivation system for growingArabidopsis plantlets under sterile, controlled environmental conditions. The system consists of a piece of stainless-steel wire cloth (125 μm mesh size) that is fixed between 2 flat rings and held in place by 3 legs, placed in a commercially-available glass jar, and covered by the original glass lid or a sheet of sterilized cellophane. Sterilized seeds were distributed evenly across the mesh piece, the size of which allowed root growth and kept the seeds in place. After 3 weeks of cultivation, shoot and root tissues were easily harvested without mechanical damage. Proteome and metabolite analyses were performed on root and shoot tissues and demonstrated excellent reproducibility, indicating that the system is advantageous when biological variation is minimized. Induction experiments can be performed by transferring the apparatus (with plants) to a new jar containing a different nutrient solution. The apparatus is reusable and can easily be sterilized by autoclaving or dry heat. The system can be adapted to other small-seed plants by varying the mesh size.  相似文献   
6.
Parida  A.K.  Das  A.B.  Mittra  B. 《Photosynthetica》2003,41(2):191-200
Exposure of two-month-old seedlings of Bruguiera parviflora to NaCl stress (0 to 400 mM) for 45 d under hydroponic culture caused notable disorganisation of the thylakoid structure of chloroplasts in NaCl-treated leaves as revealed from transmission electron microscopy. The absorption spectra of treated and control thylakoid samples were similar having a red peak at 680 nm and Soret peaks at 439 and 471 nm in the blue region of the spectrum. The spectra of treated samples differed from control samples by gradual decrease in absorbance of 100, 200, and 400 mM NaCl treated samples at 471 and 439 nm, which could be due to scattering of radiation in these samples. Thus, absorption characteristics of thylakoid membranes indicated no major alterations in the structural integrity of the photosynthetic membranes during salt stress in B. parviflora. Analysis of pigment protein complexes of thylakoids on non-denaturing gel showed that CP1 complex consisting of photosystem (PS) 1 reaction centre decreased marginally by 19% and the CP47 constituting the core antenna of PS2 declined significantly by 30% in 400 mM NaCl treated samples in respect to control. This decrease in structural core antenna might cause inefficient photon harvesting capacity. However, CP43 content did not alter. An increase in CP2/CP1 ratio from 3.2 in control to 4.0 in 400 mM NaCl treated samples indicated significant structural changes in the thylakoids of salt treated plants. Haem staining of thylakoids revealed significant losses in cytochrome (Cyt)f and Cyt b 6 contents by NaCl stress. However, Cyt b 559 content remained nearly constant in both control and NaCl treated samples. SDS-PAGE of thylakoid proteins showed that the intensity of many of Coomassie stained polypeptide bands ranging from 15–22 and 28–66 kDa regions decreased significantly in NaCl treated samples as compared to control. Electron transport activity of thylakoids, measured in terms of DCPIP photoreduction, was 22% lower in 400 mM NaCl treated plants than in the control ones. Hence, NaCl induces oxidative stress in chloroplasts causing structural alterations in thylakoids. These structural alterations might be responsible for declined efficiency of photosystems and reduced electron transport activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
By using a hydroponic culture system, the terrestrial fiber crop ramie can growth optimally in aquatic environment and enhance exponentially quantities of high quality seedlings for subsequent field cultivation. In this study, the survival rate of ramie seedling was more than 97% when cultured using the novel hydroponic method. Further physiological analysis of the hydroponic ramie to different concentration of livestock wastewater demonstrated that all of these ramies can survival in livestock wastewater, but the 4 times diluted livestock wastewater (total N: 100.9 mg L?1, total P: 2.69 mg L?1) was more appropriate for ramie growth. The nutrients N and P in livestock wastewater were significantly decreased by the growth of ramie, and the removal efficiency of total N and total P in the 4 times diluted livestock wastewater achieved 78.1% and 43.1% respectively within 5 weeks. In conclusion, our studies highlight that the combination of ramie and the hydroponic technology resulted to be effective in the phytoremediation of livestock wastewater.  相似文献   
8.
9.
Mackowiak  C. L.  Grossl  P. R. 《Plant and Soil》1999,212(2):133-141
In the Xinjiang province of western China, conventional methods of iodine (I) supplementation (i.e, goiter pills and iodinated salt) used to mitigate I deficiencies were ineffectual. However, the recent addition of KIO3 to irrigation waters has proven effective. This study was conducted to determine the effects of I form and concentration on rice (Oryza sativa L.) growth, I partitioning within the plant, and ultimately to assist in establishing guidelines for incorporating I into the human food chain. We compared IO3 vs. I in order to determine how these chemical species differ in their biological effects. Rice was grown in 48 L aerated tubs containing nutrient solution and IO3 or I at 0, 1, 10, or 100 μM concentrations (approximately 0, 0.1, 1, and 10 mg kg−1 I). The IO3 at 1 and 10 μM had no effect on biomass yields, and the 100 μM treatment had a small negative effect. The I at 10 and 100 μM was detrimental to biomass yields. The IO3 treatments had more I partitioning to the roots (56%) on average than did the I treatments (36%), suggesting differences in uptake or translocation between I forms. The data support the theory that IO3 is electrochemically or biologically reduced to I prior to plant uptake. None of the treatments provided sufficient I in the seed to meet human dietary requirements. The I concentration found in straw at 100 μM IO3 was several times greater than seed, and could provide an indirect source of dietary I via livestock feeding on the straw. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
10.
产铁载体菌株的分离、培养条件优化及初步应用   总被引:2,自引:2,他引:0  
[背景]微生物菌肥是推动绿色农业发展的关键.铁载体是由植物根际微生物产生的一类低分子量金属离子螯合物,可通过螯合Fe3+促进植物生长,因此,筛选具有高产铁载体功能的菌种意义重大.[目的]从植株根际土壤中分离高产铁载体微生物,为开发植物根际促生菌提供种质资源.[方法]采用chrome azurol sulfonate(C...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号