首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture
Authors:Mackowiak  C L  Grossl  P R
Institution:Department of Plants, Soils, and Biometeorology, Utah State University, Logan, UT, USA. cmackow@cc.usu.edu
Abstract:In the Xinjiang province of western China, conventional methods of iodine (I) supplementation (i.e, goiter pills and iodinated salt) used to mitigate I deficiencies were ineffectual. However, the recent addition of KIO3 to irrigation waters has proven effective. This study was conducted to determine the effects of I form and concentration on rice (Oryza sativa L.) growth, I partitioning within the plant, and ultimately to assist in establishing guidelines for incorporating I into the human food chain. We compared IO3 vs. I in order to determine how these chemical species differ in their biological effects. Rice was grown in 48 L aerated tubs containing nutrient solution and IO3 or I at 0, 1, 10, or 100 μM concentrations (approximately 0, 0.1, 1, and 10 mg kg−1 I). The IO3 at 1 and 10 μM had no effect on biomass yields, and the 100 μM treatment had a small negative effect. The I at 10 and 100 μM was detrimental to biomass yields. The IO3 treatments had more I partitioning to the roots (56%) on average than did the I treatments (36%), suggesting differences in uptake or translocation between I forms. The data support the theory that IO3 is electrochemically or biologically reduced to I prior to plant uptake. None of the treatments provided sufficient I in the seed to meet human dietary requirements. The I concentration found in straw at 100 μM IO3 was several times greater than seed, and could provide an indirect source of dietary I via livestock feeding on the straw. This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:deficiency  hydroponic  iodate  iodide  iodine  rice
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号