首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
  国内免费   5篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
31.
Plant responses to abiotic stress include various modifications in amino acid metabolism. By using a hydroponic culture system, we systematically investigate modification in amino acid profiles and the proteome of Arabidopsis thaliana leaves during initial recovery from low water potential or high salinity. Both treatments elicited oxidative stress leading to a biphasic stress response during recovery. Degradation of highly abundant proteins such as subunits of photosystems and ribosomes contributed to an accumulation of free amino acids. Catabolic pathways for several low abundant amino acids were induced indicating their usage as an alternative respiratory substrate to compensate for the decreased photosynthesis. Our results demonstrate that rapid detoxification of potentially detrimental amino acids such as Lys is a priority during the initial stress recovery period. The content of Pro, which acts as a compatible osmolyte during stress, was adjusted by balancing its synthesis and catabolism both of which were induced both during and after stress treatments. The production of amino acid derived secondary metabolites was up‐regulated specifically during the recovery period, and our dataset also indicates increased synthesis rates of the precursor amino acids. Overall, our results support a tight relationship between amino acid metabolism and stress responses.  相似文献   
32.
33.
研究了北方12个落叶树种单位面积叶干重、叶片灰分、有机物质和7个元素的浓度和含量在落叶前后的变化,同一元素不同树种间及同一树种不同元素间有着不同的变化模式.单位面积叶干重、叶片有机物质浓度和含量在落叶后均表现下降的趋势;所有树种叶片灰分浓度和大部分树种的灰分含量(除刺槐、胡颓子、核桃楸外)均有增加;落叶时N、P、K的单位叶面积含量均可减少约1/3~2/3;Mg含量的减少在胡颓子、核桃楸、春榆、蒙古栎、日本落叶松等5个树种中发生,其余树种表现增加;落叶中Fe含量除胡颓子下降外,其余均表现升高;落叶中Ca、Si浓度和含量在所有分析树种中均表现增加趋势.  相似文献   
34.
Gibberellic acid (GA3) root treatments stimulated internode elongation of hydroponically grown dwarf pea seedlings (Pisum sativum L.,cv. Little Marvel) When the GA3 concentration in the solution was at least 2.9 M.Both GA3 concentration and the duration of the root-treatment period significantly affected internode elongation. This is attributed to a limited availability or saturation of active sites for gibberellin-induced cell elongation. The amount of GA3 taken up through the roots in 1 day from a 29 M GA3 solution apparently equaled or exceeded the amount which could be metabolized during the first four days after treatment, although higher concenrations and longer treatment periods produced a more prolonged response, conceivably due to 1) initial saturation of gibberellin active sites, 2) storage of surplus gibberellin in the plant, and 3) subsequent utilization of the stored gibberellin. GA3-induced stem elongation in hydroponically grown Little Marvel peas seemed to be limited initially by apparent saturation of active sites when the GA3 concentration exceeded 29 M.  相似文献   
35.
Seedlings of rice (Oryza sativa L. var. IR42) were inoculated with nitrogen-fixingAzospirillum lipoferum (strain 34H) by immersing the roots in the inoculum for 6 h. The plants were grown in the prescence of NH4 +-N for 47 days in a hydroponic system under greenhouse conditions. Inoculation significantly enhanced PO4-ion uptake of the plants in 4 of the 7 samplings tested while the uptake of NH4-ion was significantly increased in two samplings and was decreased in one sampling. Inoculation reduced root length significantly and caused significant increases in shoot fresh and dry weights. Root surface area was not affected by inoculation. Bacterial population counts suggested thatA. lipoferum survived on the roots till the end of the experiment.  相似文献   
36.
The effects of selenium on the activity of peroxidase (POD) of wheat seedling and its isozyme pattern were studied using a greenhouse hydroponic experiment. The results show that the activity of POD is increased in response to higher Se concentration (approx 5.0 mg/L) in culture medium. The electrophoretic pattern of the POD isozyme was altered by growth of the wheat in a selenium medium. Se could incorporate into some POD isozymes during either seed germination or the seedling growth period. There is a dose-responsive incorporation of selenium in isozyme of POD and selenium content in the isozyme increase along with the increase of selenium concentration in the medium.  相似文献   
37.
In the studies of nutritional absorption and metal toxicity in the root, it is important to grow plants without technical damage. We established a simple hydroponic culture system for Arabidopsis thaliana to obtain a healthy plant having a well-developed root system with many lateral roots. The phytotoxic effects of Cr, Cu, and Al ions were examined by FDA-PI staining using this culture system. The pattern of root inhibition varied with the ion, suggesting the usefulness of this culture system.  相似文献   
38.
The flavonol content of Arabidopsis thaliana and tomato seedlings was assessed in conditions of reduced nitrogen or phosphorus availability. In both systems, a significant inverse relationship was observed between nutrient availability and flavonol accumulation, with nitrogen limitation promoting the greatest increase in flavonols. A trial was established to determine the effects of decreased nitrogen and phosphorus availability on the flavonol content of leaf and fruit tissues of tomato plants (Lycopersicon esculentum cv. Chaser) in a commercial situation. Nutrients were supplied by a hydroponic system with nutrient regimes designed to provide the highest and lowest nitrogen and phosphorus levels with which it is possible to support plant growth and fruit set. Fruiting was abundant and tomato fruits were harvested at mature green, breaker and red stages of ripening; leaves were also harvested from the tops of the plants. All tissues were analysed for flavonol content using reversed‐phase high‐performance liquid chromatography. Flavonol accumulation in the leaves of mature tomato plants was found to increase significantly in response to nitrogen stress, whereas phosphorus deficiency did not elicit this response. Reduced nitrogen availability had no consistent effect on the flavonol content of tomato fruits. Phosphorus deficiency elicited an increase in flavonol content in early stages of ripening. Effects of nutrient stress on the flavonol content of tomato fruits were lost as ripening progressed. The findings suggest that nutrient status may be employed to manipulate the flavonol content of vegetative tissues but cannot be used to elevate the flavonol content of tomato fruit.  相似文献   
39.
水蓼对汞积累与分布的水培实验   总被引:1,自引:0,他引:1  
钱建平  江文莹  张力 《生态学杂志》2012,31(8):2119-2124
通过水培实验,研究不同浓度的汞(0、0.5、1、10、20和50μg·L-1)对水蓼生长的影响及水蓼的耐受性表现。结果表明:在所处理的浓度范围内,水蓼生长与生理表现未受影响。水蓼根部具有最强的汞富集能力,富集系数高达531.5%。培养液中的汞浓度与水蓼茎、叶和根中汞的富集量呈显著正相关。在同一浓度时,随着培养时间的增长,水蓼体内汞含量不断增加。水蓼茎、叶和根亚细胞中的汞分布规律表现为:细胞壁>细胞器>细胞液,细胞壁对进入植物体内的汞有很强的束缚作用,限制其进入细胞质内部。  相似文献   
40.
Mercury vapour (Hg°) emission from plants contributes to the atmospheric mercury cycle. Although a part of this Hg° emission originates from Hg(II) uptake by the roots, the question how terrestrial plants reduce Hg(II) has not been addressed so far. Young barley plants grown on a hydroponic cultivation containing Hg(II) increased the Hg° emission significantly. Homogenates of barley leaves added to dissolved Hg(II) induced a powerful volatilization at alkaline but not at acidic pH. The same pH dependence and emission kinetic together with the highest reduction capacity was observed for ascorbic acid as compared to other phytoreductants. The electrochemical potentials of the reactions involved suggest an electron transfer from NADPH via GSH and ascorbate to Hg(II). The results support the assumption of a novel mechanism how plants transfer reduction equivalents from the antioxidative defense system via ascorbate to reduce Hg(II) ions, thus counteracting mercury toxicity by volatilizing the metal. This effect appears to be assisted by other light-dependent processes such as transpiration and ascorbate synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号